File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Robust ultraclean atomically thin membranes for atomic-resolution electron microscopy

TitleRobust ultraclean atomically thin membranes for atomic-resolution electron microscopy
Authors
Issue Date2020
Citation
Nature Communications, 2020, v. 11, n. 1, article no. 541 How to Cite?
AbstractThe fast development of high-resolution electron microscopy (EM) demands a background-noise-free substrate to support the specimens, where atomically thin graphene membranes can serve as an ideal candidate. Yet the preparation of robust and ultraclean graphene EM grids remains challenging. Here we present a polymer- and transfer-free direct-etching method for batch fabrication of robust ultraclean graphene grids through membrane tension modulation. Loading samples on such graphene grids enables the detection of single metal atoms and atomic-resolution imaging of the iron core of ferritin molecules at both room- and cryo-temperature. The same kind of hydrophilic graphene grid allows the formation of ultrathin vitrified ice layer embedded most protein particles at the graphene-water interface, which facilitates cryo-EM 3D reconstruction of archaea 20S proteasomes at a record high resolution of ~2.36 Å. Our results demonstrate the significant improvements in image quality using the graphene grids and expand the scope of EM imaging.
Persistent Identifierhttp://hdl.handle.net/10722/351396

 

DC FieldValueLanguage
dc.contributor.authorZheng, Liming-
dc.contributor.authorChen, Yanan-
dc.contributor.authorLi, Ning-
dc.contributor.authorZhang, Jincan-
dc.contributor.authorLiu, Nan-
dc.contributor.authorLiu, Junjie-
dc.contributor.authorDang, Wenhui-
dc.contributor.authorDeng, Bing-
dc.contributor.authorLi, Yanbin-
dc.contributor.authorGao, Xiaoyin-
dc.contributor.authorTan, Congwei-
dc.contributor.authorYang, Zi-
dc.contributor.authorXu, Shipu-
dc.contributor.authorWang, Mingzhan-
dc.contributor.authorYang, Hao-
dc.contributor.authorSun, Luzhao-
dc.contributor.authorCui, Yi-
dc.contributor.authorWei, Xiaoding-
dc.contributor.authorGao, Peng-
dc.contributor.authorWang, Hong Wei-
dc.contributor.authorPeng, Hailin-
dc.date.accessioned2024-11-20T03:56:02Z-
dc.date.available2024-11-20T03:56:02Z-
dc.date.issued2020-
dc.identifier.citationNature Communications, 2020, v. 11, n. 1, article no. 541-
dc.identifier.urihttp://hdl.handle.net/10722/351396-
dc.description.abstractThe fast development of high-resolution electron microscopy (EM) demands a background-noise-free substrate to support the specimens, where atomically thin graphene membranes can serve as an ideal candidate. Yet the preparation of robust and ultraclean graphene EM grids remains challenging. Here we present a polymer- and transfer-free direct-etching method for batch fabrication of robust ultraclean graphene grids through membrane tension modulation. Loading samples on such graphene grids enables the detection of single metal atoms and atomic-resolution imaging of the iron core of ferritin molecules at both room- and cryo-temperature. The same kind of hydrophilic graphene grid allows the formation of ultrathin vitrified ice layer embedded most protein particles at the graphene-water interface, which facilitates cryo-EM 3D reconstruction of archaea 20S proteasomes at a record high resolution of ~2.36 Å. Our results demonstrate the significant improvements in image quality using the graphene grids and expand the scope of EM imaging.-
dc.languageeng-
dc.relation.ispartofNature Communications-
dc.titleRobust ultraclean atomically thin membranes for atomic-resolution electron microscopy-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1038/s41467-020-14359-0-
dc.identifier.pmid31992713-
dc.identifier.scopuseid_2-s2.0-85078414827-
dc.identifier.volume11-
dc.identifier.issue1-
dc.identifier.spagearticle no. 541-
dc.identifier.epagearticle no. 541-
dc.identifier.eissn2041-1723-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats