File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Bounds on k-Uniform Quantum States

TitleBounds on k-Uniform Quantum States
Authors
Keywordsabsolutely maximally entangled states
k-uniform states
quantum error-correcting codes
shadow enumerators
Shor-Laflamme enumerators
Issue Date15-Oct-2024
PublisherInstitute of Electrical and Electronics Engineers
Citation
IEEE Transactions on Information Theory, 2024 How to Cite?
Abstract

Do N -partite k -uniform states always exist when k ≤ ⎣ N /2⎦ − 1? In this work, we provide new upper bounds on the parameter k for the existence of k -uniform states in (C d ) N when d = 3, 4, 5, which extend Rains bound in 1999 and improve Scotts bound in 2004. Since a k -uniform state in (C d ) N corresponds to a pure (( N , 1, k + 1)) d quantum error-correcting code, we also give new upper bounds on the minimum distance k +1 of pure (( N , 1, k +1)) d quantum errorcorrecting codes. Furthermore, we generalize Scotts bound to heterogeneous systems, and show some non-existence results of absolutely maximally entangled states in C d1 ⊗ (C d2 ) ⊗2n .


Persistent Identifierhttp://hdl.handle.net/10722/351356
ISSN
2023 Impact Factor: 2.2
2023 SCImago Journal Rankings: 1.607

 

DC FieldValueLanguage
dc.contributor.authorShi, Fei-
dc.contributor.authorNing, Yu-
dc.contributor.authorZhao, Qi-
dc.contributor.authorZhang, Xiande-
dc.date.accessioned2024-11-20T00:39:51Z-
dc.date.available2024-11-20T00:39:51Z-
dc.date.issued2024-10-15-
dc.identifier.citationIEEE Transactions on Information Theory, 2024-
dc.identifier.issn0018-9448-
dc.identifier.urihttp://hdl.handle.net/10722/351356-
dc.description.abstract<p>Do N -partite k -uniform states always exist when k ≤ ⎣ N /2⎦ − 1? In this work, we provide new upper bounds on the parameter k for the existence of k -uniform states in (C <sup><em>d</em></sup> ) <sup>⊗<em>N</em></sup> when d = 3, 4, 5, which extend Rains bound in 1999 and improve Scotts bound in 2004. Since a k -uniform state in (C <sup><em>d</em></sup> ) <sup>⊗<em>N</em></sup> corresponds to a pure (( N , 1, k + 1)) <sub><em>d</em></sub> quantum error-correcting code, we also give new upper bounds on the minimum distance k +1 of pure (( N , 1, k +1)) <sub><em>d</em></sub> quantum errorcorrecting codes. Furthermore, we generalize Scotts bound to heterogeneous systems, and show some non-existence results of absolutely maximally entangled states in C <sup><em>d</em><sub>1</sub></sup> ⊗ (C <sup><em>d</em><sub>2</sub></sup> ) <sup>⊗2<em>n</em></sup> .<br></p>-
dc.languageeng-
dc.publisherInstitute of Electrical and Electronics Engineers-
dc.relation.ispartofIEEE Transactions on Information Theory-
dc.subjectabsolutely maximally entangled states-
dc.subjectk-uniform states-
dc.subjectquantum error-correcting codes-
dc.subjectshadow enumerators-
dc.subjectShor-Laflamme enumerators-
dc.titleBounds on k-Uniform Quantum States-
dc.typeArticle-
dc.identifier.doi10.1109/TIT.2024.3481042-
dc.identifier.scopuseid_2-s2.0-85207390147-
dc.identifier.eissn1557-9654-
dc.identifier.issnl0018-9448-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats