File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/TIT.2024.3481042
- Scopus: eid_2-s2.0-85207390147
- Find via
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: Bounds on k-Uniform Quantum States
Title | Bounds on k-Uniform Quantum States |
---|---|
Authors | |
Keywords | absolutely maximally entangled states k-uniform states quantum error-correcting codes shadow enumerators Shor-Laflamme enumerators |
Issue Date | 15-Oct-2024 |
Publisher | Institute of Electrical and Electronics Engineers |
Citation | IEEE Transactions on Information Theory, 2024 How to Cite? |
Abstract | Do N -partite k -uniform states always exist when k ≤ ⎣ N /2⎦ − 1? In this work, we provide new upper bounds on the parameter k for the existence of k -uniform states in (C d ) ⊗N when d = 3, 4, 5, which extend Rains bound in 1999 and improve Scotts bound in 2004. Since a k -uniform state in (C d ) ⊗N corresponds to a pure (( N , 1, k + 1)) d quantum error-correcting code, we also give new upper bounds on the minimum distance k +1 of pure (( N , 1, k +1)) d quantum errorcorrecting codes. Furthermore, we generalize Scotts bound to heterogeneous systems, and show some non-existence results of absolutely maximally entangled states in C d1 ⊗ (C d2 ) ⊗2n . |
Persistent Identifier | http://hdl.handle.net/10722/351356 |
ISSN | 2023 Impact Factor: 2.2 2023 SCImago Journal Rankings: 1.607 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Shi, Fei | - |
dc.contributor.author | Ning, Yu | - |
dc.contributor.author | Zhao, Qi | - |
dc.contributor.author | Zhang, Xiande | - |
dc.date.accessioned | 2024-11-20T00:39:51Z | - |
dc.date.available | 2024-11-20T00:39:51Z | - |
dc.date.issued | 2024-10-15 | - |
dc.identifier.citation | IEEE Transactions on Information Theory, 2024 | - |
dc.identifier.issn | 0018-9448 | - |
dc.identifier.uri | http://hdl.handle.net/10722/351356 | - |
dc.description.abstract | <p>Do N -partite k -uniform states always exist when k ≤ ⎣ N /2⎦ − 1? In this work, we provide new upper bounds on the parameter k for the existence of k -uniform states in (C <sup><em>d</em></sup> ) <sup>⊗<em>N</em></sup> when d = 3, 4, 5, which extend Rains bound in 1999 and improve Scotts bound in 2004. Since a k -uniform state in (C <sup><em>d</em></sup> ) <sup>⊗<em>N</em></sup> corresponds to a pure (( N , 1, k + 1)) <sub><em>d</em></sub> quantum error-correcting code, we also give new upper bounds on the minimum distance k +1 of pure (( N , 1, k +1)) <sub><em>d</em></sub> quantum errorcorrecting codes. Furthermore, we generalize Scotts bound to heterogeneous systems, and show some non-existence results of absolutely maximally entangled states in C <sup><em>d</em><sub>1</sub></sup> ⊗ (C <sup><em>d</em><sub>2</sub></sup> ) <sup>⊗2<em>n</em></sup> .<br></p> | - |
dc.language | eng | - |
dc.publisher | Institute of Electrical and Electronics Engineers | - |
dc.relation.ispartof | IEEE Transactions on Information Theory | - |
dc.subject | absolutely maximally entangled states | - |
dc.subject | k-uniform states | - |
dc.subject | quantum error-correcting codes | - |
dc.subject | shadow enumerators | - |
dc.subject | Shor-Laflamme enumerators | - |
dc.title | Bounds on k-Uniform Quantum States | - |
dc.type | Article | - |
dc.identifier.doi | 10.1109/TIT.2024.3481042 | - |
dc.identifier.scopus | eid_2-s2.0-85207390147 | - |
dc.identifier.eissn | 1557-9654 | - |
dc.identifier.issnl | 0018-9448 | - |