File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.3390/bs14030225
- Scopus: eid_2-s2.0-85188819636
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: Exploring the Role of First-Person Singular Pronouns in Detecting Suicidal Ideation: A Machine Learning Analysis of Clinical Transcripts
Title | Exploring the Role of First-Person Singular Pronouns in Detecting Suicidal Ideation: A Machine Learning Analysis of Clinical Transcripts |
---|---|
Authors | |
Keywords | clinical interview first-person singular pronoun machine learning natural language processing suicidal ideation |
Issue Date | 11-Mar-2024 |
Publisher | MDPI |
Citation | Behavioral Sciences, 2024, v. 14, n. 3 How to Cite? |
Abstract | Linguistic features, particularly the use of first-person singular pronouns (FPSPs), have been identified as potential indicators of suicidal ideation. Machine learning (ML) and natural language processing (NLP) have shown potential in suicide detection, but their clinical applicability remains underexplored. This study aimed to identify linguistic features associated with suicidal ideation and develop ML models for detection. NLP techniques were applied to clinical interview transcripts (n = 319) to extract relevant features, including four cases of FPSP (subjective, objective, dative, and possessive cases) and first-person plural pronouns (FPPPs). Logistic regression analyses were conducted for each linguistic feature, controlling for age, gender, and depression. Gradient boosting, support vector machine, random forest, decision tree, and logistic regression were trained and evaluated. Results indicated that all four cases of FPSPs were associated with depression (p < 0.05) but only the use of objective FPSPs was significantly associated with suicidal ideation (p = 0.02). Logistic regression and support vector machine models successfully detected suicidal ideation, achieving an area under the curve (AUC) of 0.57 (p < 0.05). In conclusion, FPSPs identified during clinical interviews might be a promising indicator of suicidal ideation in Chinese patients. ML algorithms might have the potential to aid clinicians in improving the detection of suicidal ideation in clinical settings. |
Persistent Identifier | http://hdl.handle.net/10722/351186 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Huang, Rong | - |
dc.contributor.author | Yi, Siqi | - |
dc.contributor.author | Chen, Jie | - |
dc.contributor.author | Chan, Kit Ying | - |
dc.contributor.author | Chan, Joey Wing Yan | - |
dc.contributor.author | Chan, Ngan Yin | - |
dc.contributor.author | Li, Shirley Xin | - |
dc.contributor.author | Wing, Yun Kwok | - |
dc.contributor.author | Li, Tim Man Ho | - |
dc.date.accessioned | 2024-11-13T00:35:51Z | - |
dc.date.available | 2024-11-13T00:35:51Z | - |
dc.date.issued | 2024-03-11 | - |
dc.identifier.citation | Behavioral Sciences, 2024, v. 14, n. 3 | - |
dc.identifier.uri | http://hdl.handle.net/10722/351186 | - |
dc.description.abstract | Linguistic features, particularly the use of first-person singular pronouns (FPSPs), have been identified as potential indicators of suicidal ideation. Machine learning (ML) and natural language processing (NLP) have shown potential in suicide detection, but their clinical applicability remains underexplored. This study aimed to identify linguistic features associated with suicidal ideation and develop ML models for detection. NLP techniques were applied to clinical interview transcripts (n = 319) to extract relevant features, including four cases of FPSP (subjective, objective, dative, and possessive cases) and first-person plural pronouns (FPPPs). Logistic regression analyses were conducted for each linguistic feature, controlling for age, gender, and depression. Gradient boosting, support vector machine, random forest, decision tree, and logistic regression were trained and evaluated. Results indicated that all four cases of FPSPs were associated with depression (p < 0.05) but only the use of objective FPSPs was significantly associated with suicidal ideation (p = 0.02). Logistic regression and support vector machine models successfully detected suicidal ideation, achieving an area under the curve (AUC) of 0.57 (p < 0.05). In conclusion, FPSPs identified during clinical interviews might be a promising indicator of suicidal ideation in Chinese patients. ML algorithms might have the potential to aid clinicians in improving the detection of suicidal ideation in clinical settings. | - |
dc.language | eng | - |
dc.publisher | MDPI | - |
dc.relation.ispartof | Behavioral Sciences | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.subject | clinical interview | - |
dc.subject | first-person singular pronoun | - |
dc.subject | machine learning | - |
dc.subject | natural language processing | - |
dc.subject | suicidal ideation | - |
dc.title | Exploring the Role of First-Person Singular Pronouns in Detecting Suicidal Ideation: A Machine Learning Analysis of Clinical Transcripts | - |
dc.type | Article | - |
dc.identifier.doi | 10.3390/bs14030225 | - |
dc.identifier.scopus | eid_2-s2.0-85188819636 | - |
dc.identifier.volume | 14 | - |
dc.identifier.issue | 3 | - |
dc.identifier.eissn | 2076-328X | - |
dc.identifier.issnl | 2076-328X | - |