File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Exploring the Role of First-Person Singular Pronouns in Detecting Suicidal Ideation: A Machine Learning Analysis of Clinical Transcripts

TitleExploring the Role of First-Person Singular Pronouns in Detecting Suicidal Ideation: A Machine Learning Analysis of Clinical Transcripts
Authors
Keywordsclinical interview
first-person singular pronoun
machine learning
natural language processing
suicidal ideation
Issue Date11-Mar-2024
PublisherMDPI
Citation
Behavioral Sciences, 2024, v. 14, n. 3 How to Cite?
AbstractLinguistic features, particularly the use of first-person singular pronouns (FPSPs), have been identified as potential indicators of suicidal ideation. Machine learning (ML) and natural language processing (NLP) have shown potential in suicide detection, but their clinical applicability remains underexplored. This study aimed to identify linguistic features associated with suicidal ideation and develop ML models for detection. NLP techniques were applied to clinical interview transcripts (n = 319) to extract relevant features, including four cases of FPSP (subjective, objective, dative, and possessive cases) and first-person plural pronouns (FPPPs). Logistic regression analyses were conducted for each linguistic feature, controlling for age, gender, and depression. Gradient boosting, support vector machine, random forest, decision tree, and logistic regression were trained and evaluated. Results indicated that all four cases of FPSPs were associated with depression (p < 0.05) but only the use of objective FPSPs was significantly associated with suicidal ideation (p = 0.02). Logistic regression and support vector machine models successfully detected suicidal ideation, achieving an area under the curve (AUC) of 0.57 (p < 0.05). In conclusion, FPSPs identified during clinical interviews might be a promising indicator of suicidal ideation in Chinese patients. ML algorithms might have the potential to aid clinicians in improving the detection of suicidal ideation in clinical settings.
Persistent Identifierhttp://hdl.handle.net/10722/351186

 

DC FieldValueLanguage
dc.contributor.authorHuang, Rong-
dc.contributor.authorYi, Siqi-
dc.contributor.authorChen, Jie-
dc.contributor.authorChan, Kit Ying-
dc.contributor.authorChan, Joey Wing Yan-
dc.contributor.authorChan, Ngan Yin-
dc.contributor.authorLi, Shirley Xin-
dc.contributor.authorWing, Yun Kwok-
dc.contributor.authorLi, Tim Man Ho-
dc.date.accessioned2024-11-13T00:35:51Z-
dc.date.available2024-11-13T00:35:51Z-
dc.date.issued2024-03-11-
dc.identifier.citationBehavioral Sciences, 2024, v. 14, n. 3-
dc.identifier.urihttp://hdl.handle.net/10722/351186-
dc.description.abstractLinguistic features, particularly the use of first-person singular pronouns (FPSPs), have been identified as potential indicators of suicidal ideation. Machine learning (ML) and natural language processing (NLP) have shown potential in suicide detection, but their clinical applicability remains underexplored. This study aimed to identify linguistic features associated with suicidal ideation and develop ML models for detection. NLP techniques were applied to clinical interview transcripts (n = 319) to extract relevant features, including four cases of FPSP (subjective, objective, dative, and possessive cases) and first-person plural pronouns (FPPPs). Logistic regression analyses were conducted for each linguistic feature, controlling for age, gender, and depression. Gradient boosting, support vector machine, random forest, decision tree, and logistic regression were trained and evaluated. Results indicated that all four cases of FPSPs were associated with depression (p < 0.05) but only the use of objective FPSPs was significantly associated with suicidal ideation (p = 0.02). Logistic regression and support vector machine models successfully detected suicidal ideation, achieving an area under the curve (AUC) of 0.57 (p < 0.05). In conclusion, FPSPs identified during clinical interviews might be a promising indicator of suicidal ideation in Chinese patients. ML algorithms might have the potential to aid clinicians in improving the detection of suicidal ideation in clinical settings.-
dc.languageeng-
dc.publisherMDPI-
dc.relation.ispartofBehavioral Sciences-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectclinical interview-
dc.subjectfirst-person singular pronoun-
dc.subjectmachine learning-
dc.subjectnatural language processing-
dc.subjectsuicidal ideation-
dc.titleExploring the Role of First-Person Singular Pronouns in Detecting Suicidal Ideation: A Machine Learning Analysis of Clinical Transcripts-
dc.typeArticle-
dc.identifier.doi10.3390/bs14030225-
dc.identifier.scopuseid_2-s2.0-85188819636-
dc.identifier.volume14-
dc.identifier.issue3-
dc.identifier.eissn2076-328X-
dc.identifier.issnl2076-328X-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats