File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1002/sta4.673
- Scopus: eid_2-s2.0-85189444072
- Find via
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: High-dimensional feature screening for nonlinear associations with survival outcome using restricted mean survival time
Title | High-dimensional feature screening for nonlinear associations with survival outcome using restricted mean survival time |
---|---|
Authors | |
Keywords | feature screening nonlinearity RMST sure independence screening survival analysis |
Issue Date | 7-Apr-2024 |
Publisher | Wiley |
Citation | Stat, 2024, v. 13, n. 2 How to Cite? |
Abstract | Feature screening is an important tool in analysing ultrahigh-dimensional data, particularly in the field of Omics and oncology studies. However, most attention has been focused on identifying features that have a linear or monotonic impact on the response variable. Detecting a sparse set of variables that have a nonlinear or nonmonotonic relationship with the response variable is still a challenging task. To fill the gap, this paper proposed a robust model-free screening approach for right-censored survival data by providing a new perspective of quantifying the covariate effect on the restricted mean survival time, rather than the routinely used hazard function. The proposed measure, based on the difference between the restricted mean survival time of covariate-stratified and overall data, is able to identify comprehensive types of associations including linear, nonlinear, nonmonotone and even local dependencies like change points. The sure screening property is established, and a more flexible iterative screening procedure is developed to increase the accuracy of the variable screening. Simulation studies are carried out to demonstrate the superiority of the proposed method in selecting important features with a complex association with the response variable. The potential of applying the proposed method to handle interval-censored failure time data has also been explored in simulations, and the results have been promising. The method is applied to a breast cancer dataset to identify potential prognostic factors, which reveals potential associations between breast cancer and lymphoma. |
Persistent Identifier | http://hdl.handle.net/10722/351063 |
ISSN | 2023 Impact Factor: 0.7 2023 SCImago Journal Rankings: 0.486 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, Yaxian | - |
dc.contributor.author | Lam, Kwok Fai | - |
dc.contributor.author | Liu, Zhonghua | - |
dc.date.accessioned | 2024-11-09T00:35:28Z | - |
dc.date.available | 2024-11-09T00:35:28Z | - |
dc.date.issued | 2024-04-07 | - |
dc.identifier.citation | Stat, 2024, v. 13, n. 2 | - |
dc.identifier.issn | 2049-1573 | - |
dc.identifier.uri | http://hdl.handle.net/10722/351063 | - |
dc.description.abstract | Feature screening is an important tool in analysing ultrahigh-dimensional data, particularly in the field of Omics and oncology studies. However, most attention has been focused on identifying features that have a linear or monotonic impact on the response variable. Detecting a sparse set of variables that have a nonlinear or nonmonotonic relationship with the response variable is still a challenging task. To fill the gap, this paper proposed a robust model-free screening approach for right-censored survival data by providing a new perspective of quantifying the covariate effect on the restricted mean survival time, rather than the routinely used hazard function. The proposed measure, based on the difference between the restricted mean survival time of covariate-stratified and overall data, is able to identify comprehensive types of associations including linear, nonlinear, nonmonotone and even local dependencies like change points. The sure screening property is established, and a more flexible iterative screening procedure is developed to increase the accuracy of the variable screening. Simulation studies are carried out to demonstrate the superiority of the proposed method in selecting important features with a complex association with the response variable. The potential of applying the proposed method to handle interval-censored failure time data has also been explored in simulations, and the results have been promising. The method is applied to a breast cancer dataset to identify potential prognostic factors, which reveals potential associations between breast cancer and lymphoma. | - |
dc.language | eng | - |
dc.publisher | Wiley | - |
dc.relation.ispartof | Stat | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.subject | feature screening | - |
dc.subject | nonlinearity | - |
dc.subject | RMST | - |
dc.subject | sure independence screening | - |
dc.subject | survival analysis | - |
dc.title | High-dimensional feature screening for nonlinear associations with survival outcome using restricted mean survival time | - |
dc.type | Article | - |
dc.identifier.doi | 10.1002/sta4.673 | - |
dc.identifier.scopus | eid_2-s2.0-85189444072 | - |
dc.identifier.volume | 13 | - |
dc.identifier.issue | 2 | - |
dc.identifier.eissn | 2049-1573 | - |
dc.identifier.issnl | 2049-1573 | - |