File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.ijheatmasstransfer.2022.122753
- Scopus: eid_2-s2.0-85126134553
- Find via
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: Effects of non-wetting fraction and pitch distance in flow boiling heat transfer in a wettability-patterned microchannel
Title | Effects of non-wetting fraction and pitch distance in flow boiling heat transfer in a wettability-patterned microchannel |
---|---|
Authors | |
Keywords | Flow boiling Pitch distance Thermal management Wettability pattern |
Issue Date | 1-Jul-2022 |
Publisher | Elsevier |
Citation | International Journal of Heat and Mass Transfer, 2022, v. 190 How to Cite? |
Abstract | Flow boiling in microchannels offers a promising and attractive solution for thermal management of electronic devices and power systems. In this paper, microchannels composed of a hydrophilic surface with hydrophobic dots were studied to characterize the effects of non-wetting fraction and pitch distance of adjacent dots on flow boiling heat transfer and pressure drop. The pitch distances ranging from 122 µm to 172 µm were studied. Using deionized water as the working fluid, highly subcooled flow boiling experiments were conducted at different mass fluxes ranging from 41.1 to 246.6 kg/m2s over a heat flux up to 146.2 W/cm 2. Bubble dynamics and flow patterns were visualized using a high-speed camera. It was found that bubbles coalesced more easily, and flow patterns transited faster in the microchannel with smaller pitch distance. Heat transfer coefficient (HTC), critical heat flux (CHF) and pressure drop were found to significantly rely on the pitch distance of dots and the mass flux. Furthermore, based on a force-balance model, bubble detached diameters were predicted in hydrophilic, hydrophobic and wettability-patterned microchannels, respectively. This provides a useful insight to optimize the wettability pattern design and then improve flow boiling heat transfer in a microchannel. |
Persistent Identifier | http://hdl.handle.net/10722/350563 |
ISSN | 2023 Impact Factor: 5.0 2023 SCImago Journal Rankings: 1.224 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wang, Hongzhao | - |
dc.contributor.author | Yang, Yinchuang | - |
dc.contributor.author | Wang, Ying | - |
dc.contributor.author | Chao, YHC | - |
dc.contributor.author | Qiu, Huihe | - |
dc.date.accessioned | 2024-10-29T00:32:17Z | - |
dc.date.available | 2024-10-29T00:32:17Z | - |
dc.date.issued | 2022-07-01 | - |
dc.identifier.citation | International Journal of Heat and Mass Transfer, 2022, v. 190 | - |
dc.identifier.issn | 0017-9310 | - |
dc.identifier.uri | http://hdl.handle.net/10722/350563 | - |
dc.description.abstract | <p>Flow boiling in microchannels offers a promising and attractive solution for thermal management of electronic devices and power systems. In this paper, microchannels composed of a hydrophilic surface with hydrophobic dots were studied to characterize the effects of non-wetting fraction and pitch distance of adjacent dots on flow boiling heat transfer and pressure drop. The pitch distances ranging from 122 µm to 172 µm were studied. Using deionized water as the working fluid, highly subcooled flow boiling experiments were conducted at different mass fluxes ranging from 41.1 to 246.6 kg/m2s over a heat flux up to 146.2 W/cm 2. Bubble dynamics and flow patterns were visualized using a high-speed camera. It was found that bubbles coalesced more easily, and flow patterns transited faster in the microchannel with smaller pitch distance. Heat transfer coefficient (HTC), critical heat flux (CHF) and pressure drop were found to significantly rely on the pitch distance of dots and the mass flux. Furthermore, based on a force-balance model, bubble detached diameters were predicted in hydrophilic, hydrophobic and wettability-patterned microchannels, respectively. This provides a useful insight to optimize the wettability pattern design and then improve flow boiling heat transfer in a microchannel.<br></p> | - |
dc.language | eng | - |
dc.publisher | Elsevier | - |
dc.relation.ispartof | International Journal of Heat and Mass Transfer | - |
dc.subject | Flow boiling | - |
dc.subject | Pitch distance | - |
dc.subject | Thermal management | - |
dc.subject | Wettability pattern | - |
dc.title | Effects of non-wetting fraction and pitch distance in flow boiling heat transfer in a wettability-patterned microchannel | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.ijheatmasstransfer.2022.122753 | - |
dc.identifier.scopus | eid_2-s2.0-85126134553 | - |
dc.identifier.volume | 190 | - |
dc.identifier.eissn | 1879-2189 | - |
dc.identifier.issnl | 0017-9310 | - |