File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Structural Performance of Cold-Formed High-Strength Steel Circular Hollow Sections under Combined Compression and Bending

TitleStructural Performance of Cold-Formed High-Strength Steel Circular Hollow Sections under Combined Compression and Bending
Authors
KeywordsBeam-columns
Circular hollow sections (CHS)
Cold-formed high-strength steel (CFHSS)
Finite element (FE)
Reliability analysis
Tubular members
Issue Date2022
Citation
Journal of Structural Engineering (United States), 2022, v. 148, n. 10, article no. 04022148 How to Cite?
AbstractThe ultimate strengths of cold-formed high-strength steel (CFHSS) circular hollow section (CHS) beam-columns have been experimentally and numerically studied in this investigation. The steel grades of CHS members were S700, S900, and S1100 with the nominal 0.2% proof stresses of 700, 900, and 1,100 MPa, respectively. In the experimental program, 32 CHS short beam-columns were axially compressed. The test results obtained in this study were used to develop an accurate finite-element (FE) model. The developed FE model precisely replicated the overall structural behavior of CHS beam-column test specimens. After validation, a detailed parametric study was conducted. The test results of CFHSS CHS long beam-columns reported in the literature were also included in this study. In the parametric study, 150 long and short beam-columns (LBC and SBC) were analyzed. The values of diameter-to-thickness ratio of CHS members varied from 9.7 to 108. The ultimate compression capacities of 190 test and numerical data were compared with the nominal compression capacities predicted from American, Australian, and European standards. The safety levels of design rules given in these standards were examined by performing a reliability analysis. It is shown that the American specification provided the closest, least scattered, and reliable predictions. On the contrary, the Australian standard provided very conservative, highly scattered, and unreliable predictions. In addition, the predictions from European code were also quite scattered and unreliable. Hence, it is proposed to use the American specification for the design of cold-formed steel CHS beam-columns with steel grades ranging from S700 to S1100.
Persistent Identifierhttp://hdl.handle.net/10722/349758
ISSN
2023 Impact Factor: 3.7
2023 SCImago Journal Rankings: 1.360

 

DC FieldValueLanguage
dc.contributor.authorMa, Jia Lin-
dc.contributor.authorPandey, Madhup-
dc.contributor.authorChan, Tak Ming-
dc.contributor.authorYoung, Ben-
dc.date.accessioned2024-10-17T07:00:37Z-
dc.date.available2024-10-17T07:00:37Z-
dc.date.issued2022-
dc.identifier.citationJournal of Structural Engineering (United States), 2022, v. 148, n. 10, article no. 04022148-
dc.identifier.issn0733-9445-
dc.identifier.urihttp://hdl.handle.net/10722/349758-
dc.description.abstractThe ultimate strengths of cold-formed high-strength steel (CFHSS) circular hollow section (CHS) beam-columns have been experimentally and numerically studied in this investigation. The steel grades of CHS members were S700, S900, and S1100 with the nominal 0.2% proof stresses of 700, 900, and 1,100 MPa, respectively. In the experimental program, 32 CHS short beam-columns were axially compressed. The test results obtained in this study were used to develop an accurate finite-element (FE) model. The developed FE model precisely replicated the overall structural behavior of CHS beam-column test specimens. After validation, a detailed parametric study was conducted. The test results of CFHSS CHS long beam-columns reported in the literature were also included in this study. In the parametric study, 150 long and short beam-columns (LBC and SBC) were analyzed. The values of diameter-to-thickness ratio of CHS members varied from 9.7 to 108. The ultimate compression capacities of 190 test and numerical data were compared with the nominal compression capacities predicted from American, Australian, and European standards. The safety levels of design rules given in these standards were examined by performing a reliability analysis. It is shown that the American specification provided the closest, least scattered, and reliable predictions. On the contrary, the Australian standard provided very conservative, highly scattered, and unreliable predictions. In addition, the predictions from European code were also quite scattered and unreliable. Hence, it is proposed to use the American specification for the design of cold-formed steel CHS beam-columns with steel grades ranging from S700 to S1100.-
dc.languageeng-
dc.relation.ispartofJournal of Structural Engineering (United States)-
dc.subjectBeam-columns-
dc.subjectCircular hollow sections (CHS)-
dc.subjectCold-formed high-strength steel (CFHSS)-
dc.subjectFinite element (FE)-
dc.subjectReliability analysis-
dc.subjectTubular members-
dc.titleStructural Performance of Cold-Formed High-Strength Steel Circular Hollow Sections under Combined Compression and Bending-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1061/(ASCE)ST.1943-541X.0003438-
dc.identifier.scopuseid_2-s2.0-85134795431-
dc.identifier.volume148-
dc.identifier.issue10-
dc.identifier.spagearticle no. 04022148-
dc.identifier.epagearticle no. 04022148-
dc.identifier.eissn1943-541X-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats