File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Equipartition principle for Wigner matrices

TitleEquipartition principle for Wigner matrices
Authors
Issue Date2021
Citation
Forum of Mathematics, Sigma, 2021, v. 9, article no. e44 How to Cite?
AbstractWe prove that the energy of any eigenvector of a sum of several independent large Wigner matrices is equally distributed among these matrices with very high precision. This shows a particularly strong microcanonical form of the equipartition principle for quantum systems whose components are modelled by Wigner matrices.
Persistent Identifierhttp://hdl.handle.net/10722/349563

 

DC FieldValueLanguage
dc.contributor.authorBao, Zhigang-
dc.contributor.authorErdős, László-
dc.contributor.authorSchnelli, Kevin-
dc.date.accessioned2024-10-17T06:59:22Z-
dc.date.available2024-10-17T06:59:22Z-
dc.date.issued2021-
dc.identifier.citationForum of Mathematics, Sigma, 2021, v. 9, article no. e44-
dc.identifier.urihttp://hdl.handle.net/10722/349563-
dc.description.abstractWe prove that the energy of any eigenvector of a sum of several independent large Wigner matrices is equally distributed among these matrices with very high precision. This shows a particularly strong microcanonical form of the equipartition principle for quantum systems whose components are modelled by Wigner matrices.-
dc.languageeng-
dc.relation.ispartofForum of Mathematics, Sigma-
dc.titleEquipartition principle for Wigner matrices-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1017/fms.2021.38-
dc.identifier.scopuseid_2-s2.0-85106969487-
dc.identifier.volume9-
dc.identifier.spagearticle no. e44-
dc.identifier.epagearticle no. e44-
dc.identifier.eissn2050-5094-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats