File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/TMI.2021.3069471
- Scopus: eid_2-s2.0-85103759454
- PMID: 33780335
- WOS: WOS:000668842500015
- Find via

Supplementary
- Citations:
- Appears in Collections:
Article: Temporal Memory Relation Network for Workflow Recognition from Surgical Video
| Title | Temporal Memory Relation Network for Workflow Recognition from Surgical Video |
|---|---|
| Authors | |
| Keywords | long-range memory clue multi-scale temporal convolution non-local operation Surgical workflow recognition |
| Issue Date | 2021 |
| Citation | IEEE Transactions on Medical Imaging, 2021, v. 40, n. 7, p. 1911-1923 How to Cite? |
| Abstract | Automatic surgical workflow recognition is a key component for developing context-aware computer-assisted systems in the operating theatre. Previous works either jointly modeled the spatial features with short fixed-range temporal information, or separately learned visual and long temporal cues. In this paper, we propose a novel end-to-end temporal memory relation network (TMRNet) for relating long-range and multi-scale temporal patterns to augment the present features. We establish a long-range memory bank to serve as a memory cell storing the rich supportive information. Through our designed temporal variation layer, the supportive cues are further enhanced by multi-scale temporal-only convolutions. To effectively incorporate the two types of cues without disturbing the joint learning of spatio-temporal features, we introduce a non-local bank operator to attentively relate the past to the present. In this regard, our TMRNet enables the current feature to view the long-range temporal dependency, as well as tolerate complex temporal extents. We have extensively validated our approach on two benchmark surgical video datasets, M2CAI challenge dataset and Cholec80 dataset. Experimental results demonstrate the outstanding performance of our method, consistently exceeding the state-of-the-art methods by a large margin (e.g., 67.0% v.s. 78.9% Jaccard on Cholec80 dataset). |
| Persistent Identifier | http://hdl.handle.net/10722/349552 |
| ISSN | 2023 Impact Factor: 8.9 2023 SCImago Journal Rankings: 3.703 |
| ISI Accession Number ID |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Jin, Yueming | - |
| dc.contributor.author | Long, Yonghao | - |
| dc.contributor.author | Chen, Cheng | - |
| dc.contributor.author | Zhao, Zixu | - |
| dc.contributor.author | Dou, Qi | - |
| dc.contributor.author | Heng, Pheng Ann | - |
| dc.date.accessioned | 2024-10-17T06:59:17Z | - |
| dc.date.available | 2024-10-17T06:59:17Z | - |
| dc.date.issued | 2021 | - |
| dc.identifier.citation | IEEE Transactions on Medical Imaging, 2021, v. 40, n. 7, p. 1911-1923 | - |
| dc.identifier.issn | 0278-0062 | - |
| dc.identifier.uri | http://hdl.handle.net/10722/349552 | - |
| dc.description.abstract | Automatic surgical workflow recognition is a key component for developing context-aware computer-assisted systems in the operating theatre. Previous works either jointly modeled the spatial features with short fixed-range temporal information, or separately learned visual and long temporal cues. In this paper, we propose a novel end-to-end temporal memory relation network (TMRNet) for relating long-range and multi-scale temporal patterns to augment the present features. We establish a long-range memory bank to serve as a memory cell storing the rich supportive information. Through our designed temporal variation layer, the supportive cues are further enhanced by multi-scale temporal-only convolutions. To effectively incorporate the two types of cues without disturbing the joint learning of spatio-temporal features, we introduce a non-local bank operator to attentively relate the past to the present. In this regard, our TMRNet enables the current feature to view the long-range temporal dependency, as well as tolerate complex temporal extents. We have extensively validated our approach on two benchmark surgical video datasets, M2CAI challenge dataset and Cholec80 dataset. Experimental results demonstrate the outstanding performance of our method, consistently exceeding the state-of-the-art methods by a large margin (e.g., 67.0% v.s. 78.9% Jaccard on Cholec80 dataset). | - |
| dc.language | eng | - |
| dc.relation.ispartof | IEEE Transactions on Medical Imaging | - |
| dc.subject | long-range memory clue | - |
| dc.subject | multi-scale temporal convolution | - |
| dc.subject | non-local operation | - |
| dc.subject | Surgical workflow recognition | - |
| dc.title | Temporal Memory Relation Network for Workflow Recognition from Surgical Video | - |
| dc.type | Article | - |
| dc.description.nature | link_to_subscribed_fulltext | - |
| dc.identifier.doi | 10.1109/TMI.2021.3069471 | - |
| dc.identifier.pmid | 33780335 | - |
| dc.identifier.scopus | eid_2-s2.0-85103759454 | - |
| dc.identifier.volume | 40 | - |
| dc.identifier.issue | 7 | - |
| dc.identifier.spage | 1911 | - |
| dc.identifier.epage | 1923 | - |
| dc.identifier.eissn | 1558-254X | - |
| dc.identifier.isi | WOS:000668842500015 | - |
