File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Accurate large scale modelling of graphene oxide: Ion trapping and chaotropic potential at the interface

TitleAccurate large scale modelling of graphene oxide: Ion trapping and chaotropic potential at the interface
Authors
KeywordsBespoke quantum derived forcefield
Graphene oxide
Interfacial phenomena
Molecular dynamics simulations
Issue Date2021
Citation
Carbon, 2021, v. 174, p. 266-275 How to Cite?
AbstractGraphene oxide (GO) shares many novel mechanical and electronic properties with graphene and has been applied extensively for uses in physics, engineering and medicine. Computational simulations of GO have widely neglected accurate characterisation by random functionalisation, forsaking steric strain and abandoning edge functional groups. Here, we show that molecular dynamics forcefield design using electronic structure calculations of hundreds of atoms of GO with accurate functionalisation shows good agreement with state-of-the-art ab initio molecular dynamics (AIMD) simulations. We find that the bespoke forcefield shows better agreement with previous AIMD and experimental results in terms of the interfacial water dynamics and ion adsorption. Namely, GO described by the bespoke forcefield is found to disrupt the hydrogen bonding network at the interface by playing a more dynamic role in accepting and donating hydrogen bonds from water. Furthermore, with the bespoke forcefield, we find preferential adsorption of ions to carboxyl functional groups and a similar mean adsorption half-life for Na+ and Cl− ions around GO. These findings are critical for future investigations of GO in complex environments in application ranging from desalination to protein adsorption for drug delivery.
Persistent Identifierhttp://hdl.handle.net/10722/349508
ISSN
2023 Impact Factor: 10.5
2023 SCImago Journal Rankings: 2.171

 

DC FieldValueLanguage
dc.contributor.authoral-Badri, Mohamed Ali-
dc.contributor.authorSmith, Paul-
dc.contributor.authorSinclair, Robert C.-
dc.contributor.authoral-Jamal, Khuloud T.-
dc.contributor.authorLorenz, Christian D.-
dc.date.accessioned2024-10-17T06:58:59Z-
dc.date.available2024-10-17T06:58:59Z-
dc.date.issued2021-
dc.identifier.citationCarbon, 2021, v. 174, p. 266-275-
dc.identifier.issn0008-6223-
dc.identifier.urihttp://hdl.handle.net/10722/349508-
dc.description.abstractGraphene oxide (GO) shares many novel mechanical and electronic properties with graphene and has been applied extensively for uses in physics, engineering and medicine. Computational simulations of GO have widely neglected accurate characterisation by random functionalisation, forsaking steric strain and abandoning edge functional groups. Here, we show that molecular dynamics forcefield design using electronic structure calculations of hundreds of atoms of GO with accurate functionalisation shows good agreement with state-of-the-art ab initio molecular dynamics (AIMD) simulations. We find that the bespoke forcefield shows better agreement with previous AIMD and experimental results in terms of the interfacial water dynamics and ion adsorption. Namely, GO described by the bespoke forcefield is found to disrupt the hydrogen bonding network at the interface by playing a more dynamic role in accepting and donating hydrogen bonds from water. Furthermore, with the bespoke forcefield, we find preferential adsorption of ions to carboxyl functional groups and a similar mean adsorption half-life for Na+ and Cl− ions around GO. These findings are critical for future investigations of GO in complex environments in application ranging from desalination to protein adsorption for drug delivery.-
dc.languageeng-
dc.relation.ispartofCarbon-
dc.subjectBespoke quantum derived forcefield-
dc.subjectGraphene oxide-
dc.subjectInterfacial phenomena-
dc.subjectMolecular dynamics simulations-
dc.titleAccurate large scale modelling of graphene oxide: Ion trapping and chaotropic potential at the interface-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.carbon.2020.12.032-
dc.identifier.scopuseid_2-s2.0-85098699044-
dc.identifier.volume174-
dc.identifier.spage266-
dc.identifier.epage275-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats