File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1021/acsnano.9b04898
- Scopus: eid_2-s2.0-85076733884
- PMID: 31742990
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Neutron Activated 153Sm Sealed in Carbon Nanocapsules for in Vivo Imaging and Tumor Radiotherapy
Title | Neutron Activated <sup>153</sup>Sm Sealed in Carbon Nanocapsules for in Vivo Imaging and Tumor Radiotherapy |
---|---|
Authors | Wang, Julie T.W.Klippstein, RebeccaMartincic, MarkusPach, ElzbietaFeldman, RobertŠefl, MartinMichel, YvesAsker, DanielSosabowski, Jane K.Kalbac, MartinDa Ros, TatianaMénard-Moyon, CéciliaBianco, AlbertoKyriakou, IoannaEmfietzoglou, DimitrisSaccavini, Jean ClaudeBallesteros, BelénAl-Jamal, Khuloud T.Tobias, Gerard |
Keywords | cancer therapy filled carbon nanotubes nanoencapsulation nanooncology nuclear imaging radiooncology |
Issue Date | 2020 |
Citation | ACS Nano, 2020, v. 14, n. 1, p. 129-141 How to Cite? |
Abstract | Radiation therapy along with chemotherapy and surgery remain the main cancer treatments. Radiotherapy can be applied to patients externally (external beam radiotherapy) or internally (brachytherapy and radioisotope therapy). Previously, nanoencapsulation of radioactive crystals within carbon nanotubes, followed by end-closing, resulted in the formation of nanocapsules that allowed ultrasensitive imaging in healthy mice. Herein we report on the preparation of nanocapsules initially sealing "cold" isotopically enriched samarium (152Sm), which can then be activated on demand to their "hot" radioactive form (153Sm) by neutron irradiation. The use of "cold" isotopes avoids the need for radioactive facilities during the preparation of the nanocapsules, reduces radiation exposure to personnel, prevents the generation of nuclear waste, and evades the time constraints imposed by the decay of radionuclides. A very high specific radioactivity is achieved by neutron irradiation (up to 11.37 GBq/mg), making the "hot" nanocapsules useful not only for in vivo imaging but also therapeutically effective against lung cancer metastases after intravenous injection. The high in vivo stability of the radioactive payload, selective toxicity to cancerous tissues, and the elegant preparation method offer a paradigm for application of nanomaterials in radiotherapy. |
Persistent Identifier | http://hdl.handle.net/10722/349379 |
ISSN | 2023 Impact Factor: 15.8 2023 SCImago Journal Rankings: 4.593 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wang, Julie T.W. | - |
dc.contributor.author | Klippstein, Rebecca | - |
dc.contributor.author | Martincic, Markus | - |
dc.contributor.author | Pach, Elzbieta | - |
dc.contributor.author | Feldman, Robert | - |
dc.contributor.author | Šefl, Martin | - |
dc.contributor.author | Michel, Yves | - |
dc.contributor.author | Asker, Daniel | - |
dc.contributor.author | Sosabowski, Jane K. | - |
dc.contributor.author | Kalbac, Martin | - |
dc.contributor.author | Da Ros, Tatiana | - |
dc.contributor.author | Ménard-Moyon, Cécilia | - |
dc.contributor.author | Bianco, Alberto | - |
dc.contributor.author | Kyriakou, Ioanna | - |
dc.contributor.author | Emfietzoglou, Dimitris | - |
dc.contributor.author | Saccavini, Jean Claude | - |
dc.contributor.author | Ballesteros, Belén | - |
dc.contributor.author | Al-Jamal, Khuloud T. | - |
dc.contributor.author | Tobias, Gerard | - |
dc.date.accessioned | 2024-10-17T06:58:08Z | - |
dc.date.available | 2024-10-17T06:58:08Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | ACS Nano, 2020, v. 14, n. 1, p. 129-141 | - |
dc.identifier.issn | 1936-0851 | - |
dc.identifier.uri | http://hdl.handle.net/10722/349379 | - |
dc.description.abstract | Radiation therapy along with chemotherapy and surgery remain the main cancer treatments. Radiotherapy can be applied to patients externally (external beam radiotherapy) or internally (brachytherapy and radioisotope therapy). Previously, nanoencapsulation of radioactive crystals within carbon nanotubes, followed by end-closing, resulted in the formation of nanocapsules that allowed ultrasensitive imaging in healthy mice. Herein we report on the preparation of nanocapsules initially sealing "cold" isotopically enriched samarium (152Sm), which can then be activated on demand to their "hot" radioactive form (153Sm) by neutron irradiation. The use of "cold" isotopes avoids the need for radioactive facilities during the preparation of the nanocapsules, reduces radiation exposure to personnel, prevents the generation of nuclear waste, and evades the time constraints imposed by the decay of radionuclides. A very high specific radioactivity is achieved by neutron irradiation (up to 11.37 GBq/mg), making the "hot" nanocapsules useful not only for in vivo imaging but also therapeutically effective against lung cancer metastases after intravenous injection. The high in vivo stability of the radioactive payload, selective toxicity to cancerous tissues, and the elegant preparation method offer a paradigm for application of nanomaterials in radiotherapy. | - |
dc.language | eng | - |
dc.relation.ispartof | ACS Nano | - |
dc.subject | cancer therapy | - |
dc.subject | filled carbon nanotubes | - |
dc.subject | nanoencapsulation | - |
dc.subject | nanooncology | - |
dc.subject | nuclear imaging | - |
dc.subject | radiooncology | - |
dc.title | Neutron Activated <sup>153</sup>Sm Sealed in Carbon Nanocapsules for in Vivo Imaging and Tumor Radiotherapy | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1021/acsnano.9b04898 | - |
dc.identifier.pmid | 31742990 | - |
dc.identifier.scopus | eid_2-s2.0-85076733884 | - |
dc.identifier.volume | 14 | - |
dc.identifier.issue | 1 | - |
dc.identifier.spage | 129 | - |
dc.identifier.epage | 141 | - |
dc.identifier.eissn | 1936-086X | - |