File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1093/bib/bbad208
- Scopus: eid_2-s2.0-85167346620
- PMID: 37279464
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: A Bayesian approach to estimate MHC-peptide binding threshold
Title | A Bayesian approach to estimate MHC-peptide binding threshold |
---|---|
Authors | |
Keywords | Binding threshold MHC-peptide binding Motif sampling |
Issue Date | 1-Jul-2023 |
Publisher | Oxford University Press |
Citation | Briefings in Bioinformatics, 2023, v. 24, n. 4 How to Cite? |
Abstract | Major histocompatibility complex (MHC)-peptide binding is a critical step in enabling a peptide to serve as an antigen for T-cell recognition. Accurate prediction of this binding can facilitate various applications in immunotherapy. While many existing methods offer good predictive power for the binding affinity of a peptide to a specific MHC, few models attempt to infer the binding threshold that distinguishes binding sequences. These models often rely on experience-based ad hoc criteria, such as 500 or 1000nM. However, different MHCs may have different binding thresholds. As such, there is a need for an automatic, data-driven method to determine an accurate binding threshold. In this study, we proposed a Bayesian model that jointly infers core locations (binding sites), the binding affinity and the binding threshold. Our model provided the posterior distribution of the binding threshold, enabling accurate determination of an appropriate threshold for each MHC. To evaluate the performance of our method under different scenarios, we conducted simulation studies with varying dominant levels of motif distributions and proportions of random sequences. These simulation studies showed desirable estimation accuracy and robustness of our model. Additionally, when applied to real data, our results outperformed commonly used thresholds. |
Persistent Identifier | http://hdl.handle.net/10722/348712 |
ISSN | 2023 Impact Factor: 6.8 2023 SCImago Journal Rankings: 2.143 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Liu, Ran | - |
dc.contributor.author | Hu, Ye Fan | - |
dc.contributor.author | Huang, Jian Dong | - |
dc.contributor.author | Fan, Xiaodan | - |
dc.date.accessioned | 2024-10-14T00:30:06Z | - |
dc.date.available | 2024-10-14T00:30:06Z | - |
dc.date.issued | 2023-07-01 | - |
dc.identifier.citation | Briefings in Bioinformatics, 2023, v. 24, n. 4 | - |
dc.identifier.issn | 1467-5463 | - |
dc.identifier.uri | http://hdl.handle.net/10722/348712 | - |
dc.description.abstract | Major histocompatibility complex (MHC)-peptide binding is a critical step in enabling a peptide to serve as an antigen for T-cell recognition. Accurate prediction of this binding can facilitate various applications in immunotherapy. While many existing methods offer good predictive power for the binding affinity of a peptide to a specific MHC, few models attempt to infer the binding threshold that distinguishes binding sequences. These models often rely on experience-based ad hoc criteria, such as 500 or 1000nM. However, different MHCs may have different binding thresholds. As such, there is a need for an automatic, data-driven method to determine an accurate binding threshold. In this study, we proposed a Bayesian model that jointly infers core locations (binding sites), the binding affinity and the binding threshold. Our model provided the posterior distribution of the binding threshold, enabling accurate determination of an appropriate threshold for each MHC. To evaluate the performance of our method under different scenarios, we conducted simulation studies with varying dominant levels of motif distributions and proportions of random sequences. These simulation studies showed desirable estimation accuracy and robustness of our model. Additionally, when applied to real data, our results outperformed commonly used thresholds. | - |
dc.language | eng | - |
dc.publisher | Oxford University Press | - |
dc.relation.ispartof | Briefings in Bioinformatics | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.subject | Binding threshold | - |
dc.subject | MHC-peptide binding | - |
dc.subject | Motif sampling | - |
dc.title | A Bayesian approach to estimate MHC-peptide binding threshold | - |
dc.type | Article | - |
dc.identifier.doi | 10.1093/bib/bbad208 | - |
dc.identifier.pmid | 37279464 | - |
dc.identifier.scopus | eid_2-s2.0-85167346620 | - |
dc.identifier.volume | 24 | - |
dc.identifier.issue | 4 | - |
dc.identifier.eissn | 1477-4054 | - |
dc.identifier.issnl | 1467-5463 | - |