File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Advancing Presurgical Non-invasive Molecular Subgroup Prediction in Medulloblastoma Using Artificial Intelligence and MRI Signatures

TitleAdvancing Presurgical Non-invasive Molecular Subgroup Prediction in Medulloblastoma Using Artificial Intelligence and MRI Signatures
Authors
Keywordsartificial intelligence
international cohort
machine learning
medulloblastoma
molecular subgrouping
neuro-oncology
noninvasive
precision medicine
Issue Date27-Jun-2024
PublisherCell Press
Citation
Cancer Cell, 2024, v. 42, n. 7, p. 1239-1257 How to Cite?
Abstract

Global investigation of medulloblastoma has been hindered by the widespread inaccessibility of molecular subgroup testing and paucity of data. To bridge this gap, we established an international molecularly characterized database encompassing 934 medulloblastoma patients from thirteen centers across China and the United States. We demonstrate how image-based machine learning strategies have the potential to create an alternative pathway for non-invasive, presurgical, and low-cost molecular subgroup prediction in the clinical management of medulloblastoma. Our robust validation strategies—including cross-validation, external validation, and consecutive validation—demonstrate the model’s efficacy as a generalizable molecular diagnosis classifier. The detailed analysis of MRI characteristics replenishes the understanding of medulloblastoma through a nuanced radiographic lens. Additionally, comparisons between East Asia and North America subsets highlight critical management implications. We made this comprehensive dataset, which includes MRI signatures, clinicopathological features, treatment variables, and survival data, publicly available to advance global medulloblastoma research.


Persistent Identifierhttp://hdl.handle.net/10722/347145
ISSN
2023 Impact Factor: 48.8
2023 SCImago Journal Rankings: 17.507

 

DC FieldValueLanguage
dc.contributor.authorWang, Yan-Ran Joyce-
dc.contributor.authorWang, Pengcheng-
dc.contributor.authorYan, Zihan-
dc.contributor.authorZhou, Quan-
dc.contributor.authorGunturkun, Fatma-
dc.contributor.authorLi, Peng-
dc.contributor.authorHu, Yanshen-
dc.contributor.authorWu, Wei Emma-
dc.contributor.authorZhao, Kankan-
dc.contributor.authorZhang, Michael-
dc.contributor.authorLv, Haoyi-
dc.contributor.authorFu, Lehao-
dc.contributor.authorJin, Jiajie-
dc.contributor.authorDu, Qing-
dc.contributor.authorWang, Haoyu-
dc.contributor.authorChen, Kun-
dc.contributor.authorQu, Liangqiong-
dc.contributor.authorLin, Keldon-
dc.contributor.authorIv, Michael-
dc.contributor.authorWang, Hao-
dc.contributor.authorSun, Xiaoyan-
dc.contributor.authorVogel, Hannes-
dc.contributor.authorHan, Summer-
dc.contributor.authorTian, Lu-
dc.contributor.authorWu, Feng-
dc.contributor.authorJian, Gong-
dc.date.accessioned2024-09-18T00:30:39Z-
dc.date.available2024-09-18T00:30:39Z-
dc.date.issued2024-06-27-
dc.identifier.citationCancer Cell, 2024, v. 42, n. 7, p. 1239-1257-
dc.identifier.issn1535-6108-
dc.identifier.urihttp://hdl.handle.net/10722/347145-
dc.description.abstract<p>Global investigation of medulloblastoma has been hindered by the widespread inaccessibility of molecular subgroup testing and paucity of data. To bridge this gap, we established an international molecularly characterized database encompassing 934 medulloblastoma patients from thirteen centers across China and the United States. We demonstrate how image-based machine learning strategies have the potential to create an alternative pathway for non-invasive, presurgical, and low-cost molecular subgroup prediction in the clinical management of medulloblastoma. Our robust validation strategies—including cross-validation, external validation, and consecutive validation—demonstrate the model’s efficacy as a generalizable molecular diagnosis classifier. The detailed analysis of MRI characteristics replenishes the understanding of medulloblastoma through a nuanced radiographic lens. Additionally, comparisons between East Asia and North America subsets highlight critical management implications. We made this comprehensive dataset, which includes MRI signatures, clinicopathological features, treatment variables, and survival data, publicly available to advance global medulloblastoma research.<br></p>-
dc.languageeng-
dc.publisherCell Press-
dc.relation.ispartofCancer Cell-
dc.subjectartificial intelligence-
dc.subjectinternational cohort-
dc.subjectmachine learning-
dc.subjectmedulloblastoma-
dc.subjectmolecular subgrouping-
dc.subjectneuro-oncology-
dc.subjectnoninvasive-
dc.subjectprecision medicine-
dc.titleAdvancing Presurgical Non-invasive Molecular Subgroup Prediction in Medulloblastoma Using Artificial Intelligence and MRI Signatures-
dc.typeArticle-
dc.identifier.doi10.1016/j.ccell.2024.06.002-
dc.identifier.scopuseid_2-s2.0-85197062745-
dc.identifier.volume42-
dc.identifier.issue7-
dc.identifier.spage1239-
dc.identifier.epage1257-
dc.identifier.eissn1878-3686-
dc.identifier.issnl1535-6108-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats