File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/SP.2018.00046
- Scopus: eid_2-s2.0-85051047360
- Find via
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Conference Paper: Angora: Efficient Fuzzing by Principled Search
Title | Angora: Efficient Fuzzing by Principled Search |
---|---|
Authors | |
Keywords | coverage based fuzzing taint analysis vulnrability detection |
Issue Date | 2018 |
Citation | Proceedings - IEEE Symposium on Security and Privacy, 2018, v. 2018-May, p. 711-725 How to Cite? |
Abstract | Fuzzing is a popular technique for finding software bugs. However, the performance of the state-of-the-art fuzzers leaves a lot to be desired. Fuzzers based on symbolic execution produce quality inputs but run slow, while fuzzers based on random mutation run fast but have difficulty producing quality inputs. We propose Angora, a new mutation-based fuzzer that outperforms the state-of-the-art fuzzers by a wide margin. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution. To solve path constraints efficiently, we introduce several key techniques: scalable byte-level taint tracking, context-sensitive branch count, search based on gradient descent, and input length exploration. On the LAVA-M data set, Angora found almost all the injected bugs, found more bugs than any other fuzzer that we compared with, and found eight times as many bugs as the second-best fuzzer in the program who. Angora also found 103 bugs that the LAVA authors injected but could not trigger. We also tested Angora on eight popular, mature open source programs. Angora found 6, 52, 29, 40 and 48 new bugs in file, jhead, nm, objdump and size, respectively. We measured the coverage of Angora and evaluated how its key techniques contribute to its impressive performance. |
Persistent Identifier | http://hdl.handle.net/10722/346716 |
ISSN | 2020 SCImago Journal Rankings: 2.407 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, Peng | - |
dc.contributor.author | Chen, Hao | - |
dc.date.accessioned | 2024-09-17T04:12:49Z | - |
dc.date.available | 2024-09-17T04:12:49Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Proceedings - IEEE Symposium on Security and Privacy, 2018, v. 2018-May, p. 711-725 | - |
dc.identifier.issn | 1081-6011 | - |
dc.identifier.uri | http://hdl.handle.net/10722/346716 | - |
dc.description.abstract | Fuzzing is a popular technique for finding software bugs. However, the performance of the state-of-the-art fuzzers leaves a lot to be desired. Fuzzers based on symbolic execution produce quality inputs but run slow, while fuzzers based on random mutation run fast but have difficulty producing quality inputs. We propose Angora, a new mutation-based fuzzer that outperforms the state-of-the-art fuzzers by a wide margin. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution. To solve path constraints efficiently, we introduce several key techniques: scalable byte-level taint tracking, context-sensitive branch count, search based on gradient descent, and input length exploration. On the LAVA-M data set, Angora found almost all the injected bugs, found more bugs than any other fuzzer that we compared with, and found eight times as many bugs as the second-best fuzzer in the program who. Angora also found 103 bugs that the LAVA authors injected but could not trigger. We also tested Angora on eight popular, mature open source programs. Angora found 6, 52, 29, 40 and 48 new bugs in file, jhead, nm, objdump and size, respectively. We measured the coverage of Angora and evaluated how its key techniques contribute to its impressive performance. | - |
dc.language | eng | - |
dc.relation.ispartof | Proceedings - IEEE Symposium on Security and Privacy | - |
dc.subject | coverage based fuzzing | - |
dc.subject | taint analysis | - |
dc.subject | vulnrability detection | - |
dc.title | Angora: Efficient Fuzzing by Principled Search | - |
dc.type | Conference_Paper | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1109/SP.2018.00046 | - |
dc.identifier.scopus | eid_2-s2.0-85051047360 | - |
dc.identifier.volume | 2018-May | - |
dc.identifier.spage | 711 | - |
dc.identifier.epage | 725 | - |