File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Scutellarin, a flavonoid compound from Scutellaria barbata, suppresses growth of breast cancer stem cells in vitro and in tumor-bearing mice

TitleScutellarin, a flavonoid compound from Scutellaria barbata, suppresses growth of breast cancer stem cells in vitro and in tumor-bearing mice
Authors
KeywordsBreast cancer stem cells
Cancer recurrence
Metastasis
Scutellaria barbata
Scutellarin
Issue Date1-Jun-2024
PublisherElsevier
Citation
Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 2024, v. 128 How to Cite?
AbstractBackground: Scutellaria barbata D. Don (SB), commonly known as Ban Zhi Lian and firstly documented by Shigong Chen, is a dried whole plant that has been studied for its therapeutic effects on breast cancer, colon cancer, and prostate cancer. Among its various compounds, scutellarin (SCU) has been demonstrated with anti-tumor effects. Purpose: This study aimed to evaluate the effects of SB water extract (SBW) and scutellarin on breast cancer stem cells (BCSCs), and to investigate their potential therapeutic effects on breast tumors in mice. Methods: BCSCs were enriched from human breast cancer cells (MDA-MB-231 and MDA-MB-361) and their characteristics were analyzed. The effects of varying concentrations of SBW and scutellarin on cell viability, proliferation, self-renewal, and migration abilities were studied, along with the underlying mechanisms. The in vivo anti-tumor effects of scutellarin were further evaluated in SCID/NOD mice. Firstly, mice were inoculated with naïve BCSCs and subjected to treatment with scutellarin or vehicle. Secondly, BCSCs were pre-treated with scutellarin or vehicle prior to inoculation into mice. Results: The derived BCSCs expressed CD44, CD133 and ALDH1, but not CD24, indicating that BCSCs have been successfully induced from both MDA-MB-231 and MDA-MB-361 cells. Both SBW and scutellarin reduced the viability, proliferation, sphere and colony formation, and migration of BCSCs. In mice with tumors derived from naïve BCSCs, scutellarin significantly reduced tumor growth, expression of proliferative (Ki67) and stem cell markers (CD44), and lung metastasis. In addition, pre-treatment with scutellarin also slowed tumor growth. Western blot results suggested the involvement of Wnt/β-catenin, NF-κB, and PTEN/Akt/mTOR signaling pathways underlying the inhibitory effects of scutellarin. Conclusion: Our study demonstrated for the first time that both SB water extract and scutellarin could reduce the proliferation and migration of BCSCs in vitro. Scutellarin was shown to possess novel inhibitory activities in BCSCs progression. These findings suggest that Scutellaria barbata water extract, in particular, scutellarin, may have potential to be further developed as an adjuvant therapy for reducing breast cancer recurrence.
Persistent Identifierhttp://hdl.handle.net/10722/346216
ISSN
2023 Impact Factor: 6.7
2023 SCImago Journal Rankings: 1.267

 

DC FieldValueLanguage
dc.contributor.authorMa, Hui-
dc.contributor.authorYue, Grace Gar‑Lee-
dc.contributor.authorLee, Julia Kin Ming-
dc.contributor.authorGao, Si-
dc.contributor.authorYuen, Ka Ki-
dc.contributor.authorCheng, Wen-
dc.contributor.authorLi, Xiang-
dc.contributor.authorLau, Clara Bik‑San-
dc.date.accessioned2024-09-12T00:30:54Z-
dc.date.available2024-09-12T00:30:54Z-
dc.date.issued2024-06-01-
dc.identifier.citationPhytomedicine: International Journal of Phytotherapy and Phytopharmacology, 2024, v. 128-
dc.identifier.issn0944-7113-
dc.identifier.urihttp://hdl.handle.net/10722/346216-
dc.description.abstractBackground: Scutellaria barbata D. Don (SB), commonly known as Ban Zhi Lian and firstly documented by Shigong Chen, is a dried whole plant that has been studied for its therapeutic effects on breast cancer, colon cancer, and prostate cancer. Among its various compounds, scutellarin (SCU) has been demonstrated with anti-tumor effects. Purpose: This study aimed to evaluate the effects of SB water extract (SBW) and scutellarin on breast cancer stem cells (BCSCs), and to investigate their potential therapeutic effects on breast tumors in mice. Methods: BCSCs were enriched from human breast cancer cells (MDA-MB-231 and MDA-MB-361) and their characteristics were analyzed. The effects of varying concentrations of SBW and scutellarin on cell viability, proliferation, self-renewal, and migration abilities were studied, along with the underlying mechanisms. The in vivo anti-tumor effects of scutellarin were further evaluated in SCID/NOD mice. Firstly, mice were inoculated with naïve BCSCs and subjected to treatment with scutellarin or vehicle. Secondly, BCSCs were pre-treated with scutellarin or vehicle prior to inoculation into mice. Results: The derived BCSCs expressed CD44, CD133 and ALDH1, but not CD24, indicating that BCSCs have been successfully induced from both MDA-MB-231 and MDA-MB-361 cells. Both SBW and scutellarin reduced the viability, proliferation, sphere and colony formation, and migration of BCSCs. In mice with tumors derived from naïve BCSCs, scutellarin significantly reduced tumor growth, expression of proliferative (Ki67) and stem cell markers (CD44), and lung metastasis. In addition, pre-treatment with scutellarin also slowed tumor growth. Western blot results suggested the involvement of Wnt/β-catenin, NF-κB, and PTEN/Akt/mTOR signaling pathways underlying the inhibitory effects of scutellarin. Conclusion: Our study demonstrated for the first time that both SB water extract and scutellarin could reduce the proliferation and migration of BCSCs in vitro. Scutellarin was shown to possess novel inhibitory activities in BCSCs progression. These findings suggest that Scutellaria barbata water extract, in particular, scutellarin, may have potential to be further developed as an adjuvant therapy for reducing breast cancer recurrence.-
dc.languageeng-
dc.publisherElsevier-
dc.relation.ispartofPhytomedicine: International Journal of Phytotherapy and Phytopharmacology-
dc.subjectBreast cancer stem cells-
dc.subjectCancer recurrence-
dc.subjectMetastasis-
dc.subjectScutellaria barbata-
dc.subjectScutellarin-
dc.titleScutellarin, a flavonoid compound from Scutellaria barbata, suppresses growth of breast cancer stem cells in vitro and in tumor-bearing mice-
dc.typeArticle-
dc.identifier.doi10.1016/j.phymed.2024.155418-
dc.identifier.pmid38518647-
dc.identifier.scopuseid_2-s2.0-85188664953-
dc.identifier.volume128-
dc.identifier.eissn1618-095X-
dc.identifier.issnl0944-7113-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats