File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Mitochondrial-Targeted Metal-Phenolic Nanoparticles to Attenuate Intervertebral Disc Degeneration: Alleviating Oxidative Stress and Mitochondrial Dysfunction

TitleMitochondrial-Targeted Metal-Phenolic Nanoparticles to Attenuate Intervertebral Disc Degeneration: Alleviating Oxidative Stress and Mitochondrial Dysfunction
Authors
Keywordsintervertebral disc degeneration
metal-phenolic nanoparticles
mitochondrial dysfunction
mitochondrial target
reactive oxygen species scavenging
Issue Date11-Mar-2024
PublisherAmerican Chemical Society
Citation
ACS Nano, 2024, v. 18, n. 12, p. 8885-8905 How to Cite?
AbstractAs intervertebral disc degeneration (IVDD) proceeds, the dysfunctional mitochondria disrupt the viability of nucleus pulposus cells, initiating the degradation of the extracellular matrix. To date, there is a lack of effective therapies targeting the mitochondria of nucleus pulposus cells. Here, we synthesized polygallic acid-manganese (PGA-Mn) nanoparticles via self-assembly polymerization of gallic acid in an aqueous medium and introduced a mitochondrial targeting peptide (TP04) onto the nanoparticles using a Schiff base linkage, resulting in PGA-Mn-TP04 nanoparticles. With a size smaller than 50 nm, PGA-Mn-TP04 possesses pH-buffering capacity, avoiding lysosomal confinement and selectively accumulating within mitochondria through electrostatic interactions. The rapid electron exchange between manganese ions and gallic acid enhances the redox capability of PGA-Mn-TP04, effectively reducing mitochondrial damage caused by mitochondrial reactive oxygen species. Moreover, PGA-Mn-TP04 restores mitochondrial function by facilitating the fusion of mitochondria and minimizing their fission, thereby sustaining the vitality of nucleus pulposus cells. In the rat IVDD model, PGA-Mn-TP04 maintained intervertebral disc height and nucleus pulposus tissue hydration. It offers a nonoperative treatment approach for IVDD and other skeletal muscle diseases resulting from mitochondrial dysfunction, presenting an alternative to traditional surgical interventions.
Persistent Identifierhttp://hdl.handle.net/10722/345884
ISSN
2023 Impact Factor: 15.8
2023 SCImago Journal Rankings: 4.593

 

DC FieldValueLanguage
dc.contributor.authorChen, Qizhu-
dc.contributor.authorQian, Qiuping-
dc.contributor.authorXu, Hongbo-
dc.contributor.authorZhou, Hao-
dc.contributor.authorChen, Linjie-
dc.contributor.authorShao, Nannan-
dc.contributor.authorZhang, Kai-
dc.contributor.authorChen, Tao-
dc.contributor.authorTian, Haijun-
dc.contributor.authorZhang, Zhiguang-
dc.contributor.authorJones, Morgan-
dc.contributor.authorKwan, Kenny Yat Hong-
dc.contributor.authorSewell, Mathew-
dc.contributor.authorShen, Shuying-
dc.contributor.authorWang, Xiangyang-
dc.contributor.authorKhan, Moonis Ali-
dc.contributor.authorMakvandi, Pooyan-
dc.contributor.authorJin, Shengwei-
dc.contributor.authorZhou, Yunlong-
dc.contributor.authorWu, Aimin-
dc.date.accessioned2024-09-04T07:06:14Z-
dc.date.available2024-09-04T07:06:14Z-
dc.date.issued2024-03-11-
dc.identifier.citationACS Nano, 2024, v. 18, n. 12, p. 8885-8905-
dc.identifier.issn1936-0851-
dc.identifier.urihttp://hdl.handle.net/10722/345884-
dc.description.abstractAs intervertebral disc degeneration (IVDD) proceeds, the dysfunctional mitochondria disrupt the viability of nucleus pulposus cells, initiating the degradation of the extracellular matrix. To date, there is a lack of effective therapies targeting the mitochondria of nucleus pulposus cells. Here, we synthesized polygallic acid-manganese (PGA-Mn) nanoparticles via self-assembly polymerization of gallic acid in an aqueous medium and introduced a mitochondrial targeting peptide (TP04) onto the nanoparticles using a Schiff base linkage, resulting in PGA-Mn-TP04 nanoparticles. With a size smaller than 50 nm, PGA-Mn-TP04 possesses pH-buffering capacity, avoiding lysosomal confinement and selectively accumulating within mitochondria through electrostatic interactions. The rapid electron exchange between manganese ions and gallic acid enhances the redox capability of PGA-Mn-TP04, effectively reducing mitochondrial damage caused by mitochondrial reactive oxygen species. Moreover, PGA-Mn-TP04 restores mitochondrial function by facilitating the fusion of mitochondria and minimizing their fission, thereby sustaining the vitality of nucleus pulposus cells. In the rat IVDD model, PGA-Mn-TP04 maintained intervertebral disc height and nucleus pulposus tissue hydration. It offers a nonoperative treatment approach for IVDD and other skeletal muscle diseases resulting from mitochondrial dysfunction, presenting an alternative to traditional surgical interventions.-
dc.languageeng-
dc.publisherAmerican Chemical Society-
dc.relation.ispartofACS Nano-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectintervertebral disc degeneration-
dc.subjectmetal-phenolic nanoparticles-
dc.subjectmitochondrial dysfunction-
dc.subjectmitochondrial target-
dc.subjectreactive oxygen species scavenging-
dc.titleMitochondrial-Targeted Metal-Phenolic Nanoparticles to Attenuate Intervertebral Disc Degeneration: Alleviating Oxidative Stress and Mitochondrial Dysfunction-
dc.typeArticle-
dc.identifier.doi10.1021/acsnano.3c12163-
dc.identifier.scopuseid_2-s2.0-85187564914-
dc.identifier.volume18-
dc.identifier.issue12-
dc.identifier.spage8885-
dc.identifier.epage8905-
dc.identifier.eissn1936-086X-
dc.identifier.issnl1936-0851-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats