File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Ceramic Nanomaterials in Caries Prevention: A Narrative Review

TitleCeramic Nanomaterials in Caries Prevention: A Narrative Review
Authors
Keywordscaries
dentin
dentistry
nanomaterials
nanoparticles
prevention
remineralising
Issue Date2022
Citation
Nanomaterials, 2022, v. 12, n. 24, article no. 4416 How to Cite?
AbstractCeramic nanomaterials are nanoscale inorganic metalloid solids that can be synthesised by heating at high temperatures followed by rapid cooling. Since the first nanoceramics were developed in the 1980s, ceramic nanomaterials have rapidly become one of the core nanomaterials for research because of their versatility in application and use in technology. Researchers are developing ceramic nanomaterials for dental use because ceramic nanoparticles are more stable and cheaper in production than metallic nanoparticles. Ceramic nanomaterials can be used to prevent dental caries because some of them have mineralising properties to promote the remineralisation of tooth tissue. Ceramic minerals facilitate the remineralisation process and maintain an equilibrium in pH levels to maintain tooth integrity. In addition, ceramic nanomaterials have antibacterial properties to inhibit the growth of cariogenic biofilm. Researchers have developed antimicrobial nanoparticles, conjugated ceramic minerals with antibacterial and mineralising properties, to prevent the formation and progression of caries. Common ceramic nanomaterials developed for caries prevention include calcium-based (including hydroxyapatite-based), bioactive glass-based, and silica-based nanoparticles. Calcium-based ceramic nanomaterials can substitute for the lost hydroxyapatite by depositing calcium ions. Bioactive glass-based nanoparticles contain surface-reactive glass that can form apatite crystals resembling bone and tooth tissue and exhibit chemical bonding to the bone and tooth tissue. Silica-based nanoparticles contain silica for collagen infiltration and enhancing heterogeneous mineralisation of the dentin collagen matrix. In summary, ceramic nanomaterials can be used for caries prevention because of their antibacterial and mineralising properties. This study gives an overview of ceramic nanomaterials for the prevention of dental caries.
Persistent Identifierhttp://hdl.handle.net/10722/345823

 

DC FieldValueLanguage
dc.contributor.authorNizami, Mohammed Zahedul Islam-
dc.contributor.authorXu, Veena Wenqing-
dc.contributor.authorYin, Iris Xiaoxue-
dc.contributor.authorLung, Christie Ying Kei-
dc.contributor.authorNiu, John Yun-
dc.contributor.authorChu, Chun Hung-
dc.date.accessioned2024-09-01T10:59:57Z-
dc.date.available2024-09-01T10:59:57Z-
dc.date.issued2022-
dc.identifier.citationNanomaterials, 2022, v. 12, n. 24, article no. 4416-
dc.identifier.urihttp://hdl.handle.net/10722/345823-
dc.description.abstractCeramic nanomaterials are nanoscale inorganic metalloid solids that can be synthesised by heating at high temperatures followed by rapid cooling. Since the first nanoceramics were developed in the 1980s, ceramic nanomaterials have rapidly become one of the core nanomaterials for research because of their versatility in application and use in technology. Researchers are developing ceramic nanomaterials for dental use because ceramic nanoparticles are more stable and cheaper in production than metallic nanoparticles. Ceramic nanomaterials can be used to prevent dental caries because some of them have mineralising properties to promote the remineralisation of tooth tissue. Ceramic minerals facilitate the remineralisation process and maintain an equilibrium in pH levels to maintain tooth integrity. In addition, ceramic nanomaterials have antibacterial properties to inhibit the growth of cariogenic biofilm. Researchers have developed antimicrobial nanoparticles, conjugated ceramic minerals with antibacterial and mineralising properties, to prevent the formation and progression of caries. Common ceramic nanomaterials developed for caries prevention include calcium-based (including hydroxyapatite-based), bioactive glass-based, and silica-based nanoparticles. Calcium-based ceramic nanomaterials can substitute for the lost hydroxyapatite by depositing calcium ions. Bioactive glass-based nanoparticles contain surface-reactive glass that can form apatite crystals resembling bone and tooth tissue and exhibit chemical bonding to the bone and tooth tissue. Silica-based nanoparticles contain silica for collagen infiltration and enhancing heterogeneous mineralisation of the dentin collagen matrix. In summary, ceramic nanomaterials can be used for caries prevention because of their antibacterial and mineralising properties. This study gives an overview of ceramic nanomaterials for the prevention of dental caries.-
dc.languageeng-
dc.relation.ispartofNanomaterials-
dc.subjectcaries-
dc.subjectdentin-
dc.subjectdentistry-
dc.subjectnanomaterials-
dc.subjectnanoparticles-
dc.subjectprevention-
dc.subjectremineralising-
dc.titleCeramic Nanomaterials in Caries Prevention: A Narrative Review-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.3390/nano12244416-
dc.identifier.scopuseid_2-s2.0-85144830499-
dc.identifier.volume12-
dc.identifier.issue24-
dc.identifier.spagearticle no. 4416-
dc.identifier.epagearticle no. 4416-
dc.identifier.eissn2079-4991-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats