File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: CONVERGENCE OF THE MOMENTUM METHOD FOR SEMIALGEBRAIC FUNCTIONS WITH LOCALLY LIPSCHITZ GRADIENTS

TitleCONVERGENCE OF THE MOMENTUM METHOD FOR SEMIALGEBRAIC FUNCTIONS WITH LOCALLY LIPSCHITZ GRADIENTS
Authors
KeywordsKurdyka-\ Lojasiewicz inequality
ordinary differential equations
semialgebraic geometry
Issue Date2023
Citation
SIAM Journal on Optimization, 2023, v. 33, n. 4, p. 3012-3037 How to Cite?
AbstractWe propose a new length formula that governs the iterates of the momentum method when minimizing differentiable semialgebraic functions with locally Lipschitz gradients. It enables us to establish local convergence, global convergence, and convergence to local minimizers without assuming global Lipschitz continuity of the gradient, coercivity, and a global growth condition, as is done in the literature. As a result, we provide the first convergence guarantee of the momentum method starting from arbitrary initial points when applied to matrix factorization, matrix sensing, and linear neural networks.
Persistent Identifierhttp://hdl.handle.net/10722/345367
ISSN
2023 Impact Factor: 2.6
2023 SCImago Journal Rankings: 2.138

 

DC FieldValueLanguage
dc.contributor.authorJosz, Cédric-
dc.contributor.authorLai, Lexiao-
dc.contributor.authorLi, Xiaopeng-
dc.date.accessioned2024-08-15T09:26:54Z-
dc.date.available2024-08-15T09:26:54Z-
dc.date.issued2023-
dc.identifier.citationSIAM Journal on Optimization, 2023, v. 33, n. 4, p. 3012-3037-
dc.identifier.issn1052-6234-
dc.identifier.urihttp://hdl.handle.net/10722/345367-
dc.description.abstractWe propose a new length formula that governs the iterates of the momentum method when minimizing differentiable semialgebraic functions with locally Lipschitz gradients. It enables us to establish local convergence, global convergence, and convergence to local minimizers without assuming global Lipschitz continuity of the gradient, coercivity, and a global growth condition, as is done in the literature. As a result, we provide the first convergence guarantee of the momentum method starting from arbitrary initial points when applied to matrix factorization, matrix sensing, and linear neural networks.-
dc.languageeng-
dc.relation.ispartofSIAM Journal on Optimization-
dc.subjectKurdyka-\ Lojasiewicz inequality-
dc.subjectordinary differential equations-
dc.subjectsemialgebraic geometry-
dc.titleCONVERGENCE OF THE MOMENTUM METHOD FOR SEMIALGEBRAIC FUNCTIONS WITH LOCALLY LIPSCHITZ GRADIENTS-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1137/23M1545720-
dc.identifier.scopuseid_2-s2.0-85178660807-
dc.identifier.volume33-
dc.identifier.issue4-
dc.identifier.spage3012-
dc.identifier.epage3037-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats