File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Global stability of first-order methods for coercive tame functions

TitleGlobal stability of first-order methods for coercive tame functions
Authors
Keywords65K05
90C06
90C26
Differential inclusions
Kurdyka–Łojasiewicz inequality
Semi-algebraic geometry
Issue Date2024
Citation
Mathematical Programming, 2024, v. 207, n. 1-2, p. 551-576 How to Cite?
AbstractWe consider first-order methods with constant step size for minimizing locally Lipschitz coercive functions that are tame in an o-minimal structure on the real field. We prove that if the method is approximated by subgradient trajectories, then the iterates eventually remain in a neighborhood of a connected component of the set of critical points. Under suitable method-dependent regularity assumptions, this result applies to the subgradient method with momentum, the stochastic subgradient method with random reshuffling and momentum, and the random-permutations cyclic coordinate descent method.
Persistent Identifierhttp://hdl.handle.net/10722/345357
ISSN
2023 Impact Factor: 2.2
2023 SCImago Journal Rankings: 1.982

 

DC FieldValueLanguage
dc.contributor.authorJosz, Cédric-
dc.contributor.authorLai, Lexiao-
dc.date.accessioned2024-08-15T09:26:51Z-
dc.date.available2024-08-15T09:26:51Z-
dc.date.issued2024-
dc.identifier.citationMathematical Programming, 2024, v. 207, n. 1-2, p. 551-576-
dc.identifier.issn0025-5610-
dc.identifier.urihttp://hdl.handle.net/10722/345357-
dc.description.abstractWe consider first-order methods with constant step size for minimizing locally Lipschitz coercive functions that are tame in an o-minimal structure on the real field. We prove that if the method is approximated by subgradient trajectories, then the iterates eventually remain in a neighborhood of a connected component of the set of critical points. Under suitable method-dependent regularity assumptions, this result applies to the subgradient method with momentum, the stochastic subgradient method with random reshuffling and momentum, and the random-permutations cyclic coordinate descent method.-
dc.languageeng-
dc.relation.ispartofMathematical Programming-
dc.subject65K05-
dc.subject90C06-
dc.subject90C26-
dc.subjectDifferential inclusions-
dc.subjectKurdyka–Łojasiewicz inequality-
dc.subjectSemi-algebraic geometry-
dc.titleGlobal stability of first-order methods for coercive tame functions-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1007/s10107-023-02020-9-
dc.identifier.scopuseid_2-s2.0-85173971313-
dc.identifier.volume207-
dc.identifier.issue1-2-
dc.identifier.spage551-
dc.identifier.epage576-
dc.identifier.eissn1436-4646-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats