File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1007/s00371-020-01934-1
- Scopus: eid_2-s2.0-85094638954
- Find via
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: RGB-D-based gaze point estimation via multi-column CNNs and facial landmarks global optimization
Title | RGB-D-based gaze point estimation via multi-column CNNs and facial landmarks global optimization |
---|---|
Authors | |
Keywords | Gaze tracking Human–computer interaction Multi-column CNNs |
Issue Date | 2021 |
Citation | Visual Computer, 2021, v. 37, n. 7, p. 1731-1741 How to Cite? |
Abstract | In this work, we utilize a multi-column CNNs framework to estimate the gaze point of a person sitting in front of a display from an RGB-D image of the person. Given that gaze points are determined by head poses, eyeball poses, and 3D eye positions, we propose to infer the three components separately and then integrate them for gaze point estimation. The captured depth images, however, usually contain noises and black holes which prevent us from acquiring reliable head pose and 3D eye position estimation. Therefore, we propose to refine the raw depth for 68 facial keypoints by first estimating their relative depths from RGB face images, which along with the captured raw depths are then used to solve the absolute depth for all facial keypoints through global optimization. The refined depths will provide us reliable estimation for both head pose and 3D eye position. Given that existing publicly available RGB-D gaze tracking datasets are small, we also build a new dataset for training and validating our method. To the best of our knowledge, it is the largest RGB-D gaze tracking dataset in terms of the number of participants. Comprehensive experiments demonstrate that our method outperforms existing methods by a large margin on both our dataset and the Eyediap dataset. |
Persistent Identifier | http://hdl.handle.net/10722/345016 |
ISSN | 2023 Impact Factor: 3.0 2023 SCImago Journal Rankings: 0.778 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhang, Ziheng | - |
dc.contributor.author | Lian, Dongze | - |
dc.contributor.author | Gao, Shenghua | - |
dc.date.accessioned | 2024-08-15T09:24:41Z | - |
dc.date.available | 2024-08-15T09:24:41Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Visual Computer, 2021, v. 37, n. 7, p. 1731-1741 | - |
dc.identifier.issn | 0178-2789 | - |
dc.identifier.uri | http://hdl.handle.net/10722/345016 | - |
dc.description.abstract | In this work, we utilize a multi-column CNNs framework to estimate the gaze point of a person sitting in front of a display from an RGB-D image of the person. Given that gaze points are determined by head poses, eyeball poses, and 3D eye positions, we propose to infer the three components separately and then integrate them for gaze point estimation. The captured depth images, however, usually contain noises and black holes which prevent us from acquiring reliable head pose and 3D eye position estimation. Therefore, we propose to refine the raw depth for 68 facial keypoints by first estimating their relative depths from RGB face images, which along with the captured raw depths are then used to solve the absolute depth for all facial keypoints through global optimization. The refined depths will provide us reliable estimation for both head pose and 3D eye position. Given that existing publicly available RGB-D gaze tracking datasets are small, we also build a new dataset for training and validating our method. To the best of our knowledge, it is the largest RGB-D gaze tracking dataset in terms of the number of participants. Comprehensive experiments demonstrate that our method outperforms existing methods by a large margin on both our dataset and the Eyediap dataset. | - |
dc.language | eng | - |
dc.relation.ispartof | Visual Computer | - |
dc.subject | Gaze tracking | - |
dc.subject | Human–computer interaction | - |
dc.subject | Multi-column CNNs | - |
dc.title | RGB-D-based gaze point estimation via multi-column CNNs and facial landmarks global optimization | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1007/s00371-020-01934-1 | - |
dc.identifier.scopus | eid_2-s2.0-85094638954 | - |
dc.identifier.volume | 37 | - |
dc.identifier.issue | 7 | - |
dc.identifier.spage | 1731 | - |
dc.identifier.epage | 1741 | - |