File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: PD-1/CD80+ small extracellular vesicles from immunocytes induce cold tumours featured with enhanced adaptive immunosuppression

TitlePD-1/CD80+ small extracellular vesicles from immunocytes induce cold tumours featured with enhanced adaptive immunosuppression
Authors
Issue Date8-May-2024
PublisherNature Research
Citation
Nature Communications, 2024, v. 15, n. 1, p. 1-18 How to Cite?
Abstract

Only a minority of cancer patients benefit from immune checkpoint blockade therapy. Sophisticated cross-talk among different immune checkpoint pathways as well as interaction pattern of immune checkpoint molecules carried on circulating small extracellular vesicles (sEV) might contribute to the low response rate. Here we demonstrate that PD-1 and CD80 carried on immunocyte-derived sEVs (I-sEV) induce an adaptive redistribution of PD-L1 in tumour cells. The resulting decreased cell membrane PD-L1 expression and increased sEV PD-L1 secretion into the circulation contribute to systemic immunosuppression. PD-1/CD80+ I-sEVs also induce downregulation of adhesion- and antigen presentation-related molecules on tumour cells and impaired immune cell infiltration, thereby converting tumours to an immunologically cold phenotype. Moreover, synchronous analysis of multiple checkpoint molecules, including PD-1, CD80 and PD-L1, on circulating sEVs distinguishes clinical responders from those patients who poorly respond to anti-PD-1 treatment. Altogether, our study shows that sEVs carry multiple inhibitory immune checkpoints proteins, which form a potentially targetable adaptive loop to suppress antitumour immunity.


Persistent Identifierhttp://hdl.handle.net/10722/344844
ISSN
2023 Impact Factor: 14.7
2023 SCImago Journal Rankings: 4.887

 

DC FieldValueLanguage
dc.contributor.authorZhang, Lin-Zhou-
dc.contributor.authorYang, Jie-Gang-
dc.contributor.authorChen, Gai-Li-
dc.contributor.authorXie, Qi-Hui-
dc.contributor.authorFu, Qiu-Yun-
dc.contributor.authorXia, Hou-Fu-
dc.contributor.authorLi, Yi-Cun-
dc.contributor.authorHuang, Jue-
dc.contributor.authorLi, Ye-
dc.contributor.authorWu, Min-
dc.contributor.authorLiu, Hai-Ming-
dc.contributor.authorWang, Fu-Bing-
dc.contributor.authorYi, Ke-Zhen-
dc.contributor.authorJiang, Huan-Gang-
dc.contributor.authorZhou, Fu-Xiang-
dc.contributor.authorWang, Wei-
dc.contributor.authorYu, Zi-Li-
dc.contributor.authorZhang, Wei-
dc.contributor.authorZhong, Ya-Hua-
dc.contributor.authorBian, Zhuan-
dc.contributor.authorYang, Hong-Yu-
dc.contributor.authorLiu, Bing-
dc.contributor.authorChen, Gang-
dc.date.accessioned2024-08-12T04:07:52Z-
dc.date.available2024-08-12T04:07:52Z-
dc.date.issued2024-05-08-
dc.identifier.citationNature Communications, 2024, v. 15, n. 1, p. 1-18-
dc.identifier.issn2041-1723-
dc.identifier.urihttp://hdl.handle.net/10722/344844-
dc.description.abstract<p>Only a minority of cancer patients benefit from immune checkpoint blockade therapy. Sophisticated cross-talk among different immune checkpoint pathways as well as interaction pattern of immune checkpoint molecules carried on circulating small extracellular vesicles (sEV) might contribute to the low response rate. Here we demonstrate that PD-1 and CD80 carried on immunocyte-derived sEVs (I-sEV) induce an adaptive redistribution of PD-L1 in tumour cells. The resulting decreased cell membrane PD-L1 expression and increased sEV PD-L1 secretion into the circulation contribute to systemic immunosuppression. PD-1/CD80<sup>+</sup> I-sEVs also induce downregulation of adhesion- and antigen presentation-related molecules on tumour cells and impaired immune cell infiltration, thereby converting tumours to an immunologically cold phenotype. Moreover, synchronous analysis of multiple checkpoint molecules, including PD-1, CD80 and PD-L1, on circulating sEVs distinguishes clinical responders from those patients who poorly respond to anti-PD-1 treatment. Altogether, our study shows that sEVs carry multiple inhibitory immune checkpoints proteins, which form a potentially targetable adaptive loop to suppress antitumour immunity.<br></p>-
dc.languageeng-
dc.publisherNature Research-
dc.relation.ispartofNature Communications-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.titlePD-1/CD80+ small extracellular vesicles from immunocytes induce cold tumours featured with enhanced adaptive immunosuppression-
dc.typeArticle-
dc.identifier.doi10.1038/s41467-024-48200-9-
dc.identifier.scopuseid_2-s2.0-85192641711-
dc.identifier.volume15-
dc.identifier.issue1-
dc.identifier.spage1-
dc.identifier.epage18-
dc.identifier.eissn2041-1723-
dc.identifier.issnl2041-1723-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats