File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1039/c7ee00098g
- Scopus: eid_2-s2.0-85017514734
- Find via
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties
Title | Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties |
---|---|
Authors | |
Issue Date | 2017 |
Citation | Energy and Environmental Science, 2017, v. 10, n. 3, p. 799-807 How to Cite? |
Abstract | A high thermoelectric power factor not only enables a potentially high figure of merit ZT but also leads to a large output power density, and hence it is pivotal to find an effective route to improve the power factor. Previous reports on the manipulation of carrier scattering mechanisms (e.g. ionization scattering) were mainly focused on enhancing the Seebeck coefficient. In contrast, here we demonstrate that by tuning the carrier scattering mechanism in n-type Mg3Sb2-based materials, it is possible to noticeably improve the Hall mobility, from ∼19 to ∼77 cm2 V-1 s-1, and hence substantially increase the power factor by a factor of 3, from ∼5 to ∼15 μW cm-1 K-2. The enhancement in mobility is mainly due to the reason that ionization scattering has been converted into mixed scattering between ionization and acoustic phonon scattering, which less effectively scatters the carriers. The strategy of tuning the carrier scattering mechanism to improve the mobility should be widely applicable to various material systems for achieving better thermoelectric performance. |
Persistent Identifier | http://hdl.handle.net/10722/343660 |
ISSN | 2023 Impact Factor: 32.4 2023 SCImago Journal Rankings: 10.935 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Shuai, Jing | - |
dc.contributor.author | Mao, Jun | - |
dc.contributor.author | Song, Shaowei | - |
dc.contributor.author | Zhu, Qing | - |
dc.contributor.author | Sun, Jifeng | - |
dc.contributor.author | Wang, Yumei | - |
dc.contributor.author | He, Ran | - |
dc.contributor.author | Zhou, Jiawei | - |
dc.contributor.author | Chen, Gang | - |
dc.contributor.author | Singh, David J. | - |
dc.contributor.author | Ren, Zhifeng | - |
dc.date.accessioned | 2024-05-27T09:29:01Z | - |
dc.date.available | 2024-05-27T09:29:01Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | Energy and Environmental Science, 2017, v. 10, n. 3, p. 799-807 | - |
dc.identifier.issn | 1754-5692 | - |
dc.identifier.uri | http://hdl.handle.net/10722/343660 | - |
dc.description.abstract | A high thermoelectric power factor not only enables a potentially high figure of merit ZT but also leads to a large output power density, and hence it is pivotal to find an effective route to improve the power factor. Previous reports on the manipulation of carrier scattering mechanisms (e.g. ionization scattering) were mainly focused on enhancing the Seebeck coefficient. In contrast, here we demonstrate that by tuning the carrier scattering mechanism in n-type Mg3Sb2-based materials, it is possible to noticeably improve the Hall mobility, from ∼19 to ∼77 cm2 V-1 s-1, and hence substantially increase the power factor by a factor of 3, from ∼5 to ∼15 μW cm-1 K-2. The enhancement in mobility is mainly due to the reason that ionization scattering has been converted into mixed scattering between ionization and acoustic phonon scattering, which less effectively scatters the carriers. The strategy of tuning the carrier scattering mechanism to improve the mobility should be widely applicable to various material systems for achieving better thermoelectric performance. | - |
dc.language | eng | - |
dc.relation.ispartof | Energy and Environmental Science | - |
dc.title | Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1039/c7ee00098g | - |
dc.identifier.scopus | eid_2-s2.0-85017514734 | - |
dc.identifier.volume | 10 | - |
dc.identifier.issue | 3 | - |
dc.identifier.spage | 799 | - |
dc.identifier.epage | 807 | - |
dc.identifier.eissn | 1754-5706 | - |