File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A scaling law derived from optimal dendritic wiring

TitleA scaling law derived from optimal dendritic wiring
Authors
KeywordsBranching
Computational neuroscience
Dendrite
Minimum spanning tree
Morphology
Issue Date2012
Citation
Proceedings of the National Academy of Sciences of the United States of America, 2012, v. 109, n. 27, p. 11014-11018 How to Cite?
AbstractThe wide diversity of dendritic trees is one of the most striking features of neural circuits. Here we develop a general quantitative theory relating the total length of dendritic wiring to the number of branch points and synapses. We show that optimal wiring predicts a 2/3 power law between these measures. We demonstrate that the theory is consistent with data from a wide variety of neurons across many different species and helps define the computational compartments in dendritic trees. Our results imply fundamentally distinct design principles for dendritic arbors compared with vascular, bronchial, and botanical trees.
Persistent Identifierhttp://hdl.handle.net/10722/343466
ISSN
2023 Impact Factor: 9.4
2023 SCImago Journal Rankings: 3.737

 

DC FieldValueLanguage
dc.contributor.authorCuntz, Hermann-
dc.contributor.authorMathy, Alexandre-
dc.contributor.authorHäusser, Michael-
dc.date.accessioned2024-05-10T09:08:21Z-
dc.date.available2024-05-10T09:08:21Z-
dc.date.issued2012-
dc.identifier.citationProceedings of the National Academy of Sciences of the United States of America, 2012, v. 109, n. 27, p. 11014-11018-
dc.identifier.issn0027-8424-
dc.identifier.urihttp://hdl.handle.net/10722/343466-
dc.description.abstractThe wide diversity of dendritic trees is one of the most striking features of neural circuits. Here we develop a general quantitative theory relating the total length of dendritic wiring to the number of branch points and synapses. We show that optimal wiring predicts a 2/3 power law between these measures. We demonstrate that the theory is consistent with data from a wide variety of neurons across many different species and helps define the computational compartments in dendritic trees. Our results imply fundamentally distinct design principles for dendritic arbors compared with vascular, bronchial, and botanical trees.-
dc.languageeng-
dc.relation.ispartofProceedings of the National Academy of Sciences of the United States of America-
dc.subjectBranching-
dc.subjectComputational neuroscience-
dc.subjectDendrite-
dc.subjectMinimum spanning tree-
dc.subjectMorphology-
dc.titleA scaling law derived from optimal dendritic wiring-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1073/pnas.1200430109-
dc.identifier.pmid22715290-
dc.identifier.scopuseid_2-s2.0-84863571443-
dc.identifier.volume109-
dc.identifier.issue27-
dc.identifier.spage11014-
dc.identifier.epage11018-
dc.identifier.eissn1091-6490-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats