File Download
There are no files associated with this item.
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Conference Paper: Lockdown: Backdoor Defense for Federated Learning with Isolated Subspace Training
Title | Lockdown: Backdoor Defense for Federated Learning with Isolated Subspace Training |
---|---|
Authors | |
Issue Date | 2023 |
Citation | Advances in Neural Information Processing Systems, 2023, v. 36 How to Cite? |
Abstract | Federated learning (FL) is vulnerable to backdoor attacks due to its distributed computing nature. Existing defense solution usually requires larger amount of computation in either the training or testing phase, which limits their practicality in the resource-constrain scenarios. A more practical defense, i.e., neural network (NN) pruning based defense has been proposed in centralized backdoor setting. However, our empirical study shows that traditional pruning-based solution suffers poison-coupling effect in FL, which significantly degrades the defense performance. This paper presents Lockdown, an isolated subspace training method to mitigate the poison-coupling effect. Lockdown follows three key procedures. First, it modifies the training protocol by isolating the training subspaces for different clients. Second, it utilizes randomness in initializing isolated subspacess, and performs subspace pruning and subspace recovery to segregate the subspaces between malicious and benign clients. Third, it introduces quorum consensus to cure the global model by purging malicious/dummy parameters. Empirical results show that Lockdown achieves superior and consistent defense performance compared to existing representative approaches against backdoor attacks. Another value-added property of Lockdown is the communication-efficiency and model complexity reduction, which are both critical for resource-constrain FL scenario. Our code is available at https://github.com/git-disl/Lockdown. |
Persistent Identifier | http://hdl.handle.net/10722/343460 |
ISSN | 2020 SCImago Journal Rankings: 1.399 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Huang, Tiansheng | - |
dc.contributor.author | Hu, Sihao | - |
dc.contributor.author | Chow, Ka Ho | - |
dc.contributor.author | Ilhan, Fatih | - |
dc.contributor.author | Tekin, Selim Furkan | - |
dc.contributor.author | Liu, Ling | - |
dc.date.accessioned | 2024-05-10T09:08:18Z | - |
dc.date.available | 2024-05-10T09:08:18Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Advances in Neural Information Processing Systems, 2023, v. 36 | - |
dc.identifier.issn | 1049-5258 | - |
dc.identifier.uri | http://hdl.handle.net/10722/343460 | - |
dc.description.abstract | Federated learning (FL) is vulnerable to backdoor attacks due to its distributed computing nature. Existing defense solution usually requires larger amount of computation in either the training or testing phase, which limits their practicality in the resource-constrain scenarios. A more practical defense, i.e., neural network (NN) pruning based defense has been proposed in centralized backdoor setting. However, our empirical study shows that traditional pruning-based solution suffers poison-coupling effect in FL, which significantly degrades the defense performance. This paper presents Lockdown, an isolated subspace training method to mitigate the poison-coupling effect. Lockdown follows three key procedures. First, it modifies the training protocol by isolating the training subspaces for different clients. Second, it utilizes randomness in initializing isolated subspacess, and performs subspace pruning and subspace recovery to segregate the subspaces between malicious and benign clients. Third, it introduces quorum consensus to cure the global model by purging malicious/dummy parameters. Empirical results show that Lockdown achieves superior and consistent defense performance compared to existing representative approaches against backdoor attacks. Another value-added property of Lockdown is the communication-efficiency and model complexity reduction, which are both critical for resource-constrain FL scenario. Our code is available at https://github.com/git-disl/Lockdown. | - |
dc.language | eng | - |
dc.relation.ispartof | Advances in Neural Information Processing Systems | - |
dc.title | Lockdown: Backdoor Defense for Federated Learning with Isolated Subspace Training | - |
dc.type | Conference_Paper | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.scopus | eid_2-s2.0-85191179908 | - |
dc.identifier.volume | 36 | - |