File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Robust attribution regularization

TitleRobust attribution regularization
Authors
Issue Date2019
Citation
Advances in Neural Information Processing Systems, 2019, v. 32 How to Cite?
AbstractAn emerging problem in trustworthy machine learning is to train models that produce robust interpretations for their predictions. We take a step towards solving this problem through the lens of axiomatic attribution of neural networks. Our theory is grounded in the recent work, Integrated Gradients (IG) [STY17], in axiomatically attributing a neural network's output change to its input change. We propose training objectives in classic robust optimization models to achieve robust IG attributions. Our objectives give principled generalizations of previous objectives designed for robust predictions, and they naturally degenerate to classic soft-margin training for one-layer neural networks. We also generalize previous theory and prove that the objectives for different robust optimization models are closely related. Experiments demonstrate the effectiveness of our method, and also point to intriguing problems which hint at the need for better optimization techniques or better neural network architectures for robust attribution training.
Persistent Identifierhttp://hdl.handle.net/10722/341287
ISSN
2020 SCImago Journal Rankings: 1.399

 

DC FieldValueLanguage
dc.contributor.authorChen, Jiefeng-
dc.contributor.authorWu, Xi-
dc.contributor.authorRastogi, Vaibhav-
dc.contributor.authorLiang, Yingyu-
dc.contributor.authorJha, Somesh-
dc.date.accessioned2024-03-13T08:41:38Z-
dc.date.available2024-03-13T08:41:38Z-
dc.date.issued2019-
dc.identifier.citationAdvances in Neural Information Processing Systems, 2019, v. 32-
dc.identifier.issn1049-5258-
dc.identifier.urihttp://hdl.handle.net/10722/341287-
dc.description.abstractAn emerging problem in trustworthy machine learning is to train models that produce robust interpretations for their predictions. We take a step towards solving this problem through the lens of axiomatic attribution of neural networks. Our theory is grounded in the recent work, Integrated Gradients (IG) [STY17], in axiomatically attributing a neural network's output change to its input change. We propose training objectives in classic robust optimization models to achieve robust IG attributions. Our objectives give principled generalizations of previous objectives designed for robust predictions, and they naturally degenerate to classic soft-margin training for one-layer neural networks. We also generalize previous theory and prove that the objectives for different robust optimization models are closely related. Experiments demonstrate the effectiveness of our method, and also point to intriguing problems which hint at the need for better optimization techniques or better neural network architectures for robust attribution training.-
dc.languageeng-
dc.relation.ispartofAdvances in Neural Information Processing Systems-
dc.titleRobust attribution regularization-
dc.typeConference_Paper-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.scopuseid_2-s2.0-85090172884-
dc.identifier.volume32-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats