File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Phase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel

TitlePhase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel
Authors
Issue Date16-May-2023
PublisherNature Research
Citation
Nature Communications, 2023, v. 14, n. 1 How to Cite?
Abstract

Engineering heterogeneous hydrogels with distinct phases at various lengths, which resemble biological tissues with high complexity, remains challenging by existing fabricating techniques that require complicated procedures and are often only applicable at bulk scales. Here, inspired by ubiquitous phase separation phenomena in biology, we present a one-step fabrication method based on aqueous phase separation to construct two-aqueous-phase gels that comprise multiple phases with distinct physicochemical properties. The gels fabricated by this approach exhibit enhanced interfacial mechanics compared with their counterparts obtained from conventional layer-by-layer methods. Moreover, two-aqueous-phase gels with programmable structures and tunable physicochemical properties can be conveniently constructed by adjusting the polymer constituents, gelation conditions, and combining different fabrication techniques, such as 3D-printing. The versatility of our approach is demonstrated by mimicking the key features of several biological architectures at different lengths: macroscale muscle-tendon connections; mesoscale cell patterning; microscale molecular compartmentalization. The present work advances the fabrication approach for designing heterogeneous multifunctional materials for various technological and biomedical applications.


Persistent Identifierhttp://hdl.handle.net/10722/340550
ISSN
2023 Impact Factor: 14.7
2023 SCImago Journal Rankings: 4.887
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorChen, Feipeng-
dc.contributor.authorLi, Xiufeng-
dc.contributor.authorYu, Yafeng-
dc.contributor.authorLi, Qingchuan-
dc.contributor.authorLin, Haisong-
dc.contributor.authorXu, Lizhi-
dc.contributor.authorShum, Ho Cheung-
dc.date.accessioned2024-03-11T10:45:26Z-
dc.date.available2024-03-11T10:45:26Z-
dc.date.issued2023-05-16-
dc.identifier.citationNature Communications, 2023, v. 14, n. 1-
dc.identifier.issn2041-1723-
dc.identifier.urihttp://hdl.handle.net/10722/340550-
dc.description.abstract<p> Engineering heterogeneous hydrogels with distinct phases at various lengths, which resemble biological tissues with high complexity, remains challenging by existing fabricating techniques that require complicated procedures and are often only applicable at bulk scales. Here, inspired by ubiquitous phase separation phenomena in biology, we present a one-step fabrication method based on aqueous phase separation to construct two-aqueous-phase gels that comprise multiple phases with distinct physicochemical properties. The gels fabricated by this approach exhibit enhanced interfacial mechanics compared with their counterparts obtained from conventional layer-by-layer methods. Moreover, two-aqueous-phase gels with programmable structures and tunable physicochemical properties can be conveniently constructed by adjusting the polymer constituents, gelation conditions, and combining different fabrication techniques, such as 3D-printing. The versatility of our approach is demonstrated by mimicking the key features of several biological architectures at different lengths: macroscale muscle-tendon connections; mesoscale cell patterning; microscale molecular compartmentalization. The present work advances the fabrication approach for designing heterogeneous multifunctional materials for various technological and biomedical applications. <br></p>-
dc.languageeng-
dc.publisherNature Research-
dc.relation.ispartofNature Communications-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.titlePhase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel-
dc.typeArticle-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1038/s41467-023-38394-9-
dc.identifier.scopuseid_2-s2.0-85159499238-
dc.identifier.volume14-
dc.identifier.issue1-
dc.identifier.eissn2041-1723-
dc.identifier.isiWOS:001001882100004-
dc.identifier.issnl2041-1723-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats