File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Book Chapter: Gen6D: Generalizable Model-Free 6-DoF Object Pose Estimation from RGB Images

TitleGen6D: Generalizable Model-Free 6-DoF Object Pose Estimation from RGB Images
Authors
Keywords6-Dof object pose estimation
Camera pose estimation
Issue Date11-Nov-2022
PublisherSpringer
Abstract

In this paper, we present a generalizable model-free 6-DoF object pose estimator called Gen6D. Existing generalizable pose estimators either need the high-quality object models or require additional depth maps or object masks in test time, which significantly limits their application scope. In contrast, our pose estimator only requires some posed images of the unseen object and is able to accurately predict poses of the object in arbitrary environments. Gen6D consists of an object detector, a viewpoint selector and a pose refiner, all of which do not require the 3D object model and can generalize to unseen objects. Experiments show that Gen6D achieves state-of-the-art results on two model-free datasets: the MOPED dataset and a new GenMOP dataset. In addition, on the LINEMOD dataset, Gen6D achieves competitive results compared with instance-specific pose estimators. Project page: https://liuyuan-pal.github.io/Gen6D/.


Persistent Identifierhttp://hdl.handle.net/10722/340432
ISBN
ISSN
2023 SCImago Journal Rankings: 0.606
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLiu, Yuan-
dc.contributor.authorWen, Yilin-
dc.contributor.authorPeng, Sida-
dc.contributor.authorLin, Cheng-
dc.contributor.authorLong, Xiaoxiao-
dc.contributor.authorKomura, Taku-
dc.contributor.authorWang, Wenping-
dc.date.accessioned2024-03-11T10:44:36Z-
dc.date.available2024-03-11T10:44:36Z-
dc.date.issued2022-11-11-
dc.identifier.isbn9783031198236-
dc.identifier.issn0302-9743-
dc.identifier.urihttp://hdl.handle.net/10722/340432-
dc.description.abstract<p>In this paper, we present a generalizable model-free 6-DoF object pose estimator called Gen6D. Existing generalizable pose estimators either need the high-quality object models or require additional depth maps or object masks in test time, which significantly limits their application scope. In contrast, our pose estimator only requires some posed images of the unseen object and is able to accurately predict poses of the object in arbitrary environments. Gen6D consists of an object detector, a viewpoint selector and a pose refiner, all of which do not require the 3D object model and can generalize to unseen objects. Experiments show that Gen6D achieves state-of-the-art results on two model-free datasets: the MOPED dataset and a new GenMOP dataset. In addition, on the LINEMOD dataset, Gen6D achieves competitive results compared with instance-specific pose estimators. Project page: <a href="https://liuyuan-pal.github.io/Gen6D/">https://liuyuan-pal.github.io/Gen6D/.</a></p>-
dc.languageeng-
dc.publisherSpringer-
dc.relation.ispartofLecture Notes in Computer Science-
dc.subject6-Dof object pose estimation-
dc.subjectCamera pose estimation-
dc.titleGen6D: Generalizable Model-Free 6-DoF Object Pose Estimation from RGB Images-
dc.typeBook_Chapter-
dc.identifier.doi10.1007/978-3-031-19824-3_18-
dc.identifier.scopuseid_2-s2.0-85144501792-
dc.identifier.volume13692 LNCS-
dc.identifier.spage298-
dc.identifier.epage315-
dc.identifier.eissn1611-3349-
dc.identifier.isiWOS:000903565400018-
dc.identifier.eisbn9783031198243-
dc.identifier.issnl0302-9743-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats