File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1007/978-3-031-19824-3_18
- Scopus: eid_2-s2.0-85144501792
- WOS: WOS:000903565400018
- Find via
Supplementary
- Citations:
- Appears in Collections:
Book Chapter: Gen6D: Generalizable Model-Free 6-DoF Object Pose Estimation from RGB Images
Title | Gen6D: Generalizable Model-Free 6-DoF Object Pose Estimation from RGB Images |
---|---|
Authors | |
Keywords | 6-Dof object pose estimation Camera pose estimation |
Issue Date | 11-Nov-2022 |
Publisher | Springer |
Abstract | In this paper, we present a generalizable model-free 6-DoF object pose estimator called Gen6D. Existing generalizable pose estimators either need the high-quality object models or require additional depth maps or object masks in test time, which significantly limits their application scope. In contrast, our pose estimator only requires some posed images of the unseen object and is able to accurately predict poses of the object in arbitrary environments. Gen6D consists of an object detector, a viewpoint selector and a pose refiner, all of which do not require the 3D object model and can generalize to unseen objects. Experiments show that Gen6D achieves state-of-the-art results on two model-free datasets: the MOPED dataset and a new GenMOP dataset. In addition, on the LINEMOD dataset, Gen6D achieves competitive results compared with instance-specific pose estimators. Project page: https://liuyuan-pal.github.io/Gen6D/. |
Persistent Identifier | http://hdl.handle.net/10722/340432 |
ISBN | |
ISSN | 2023 SCImago Journal Rankings: 0.606 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Liu, Yuan | - |
dc.contributor.author | Wen, Yilin | - |
dc.contributor.author | Peng, Sida | - |
dc.contributor.author | Lin, Cheng | - |
dc.contributor.author | Long, Xiaoxiao | - |
dc.contributor.author | Komura, Taku | - |
dc.contributor.author | Wang, Wenping | - |
dc.date.accessioned | 2024-03-11T10:44:36Z | - |
dc.date.available | 2024-03-11T10:44:36Z | - |
dc.date.issued | 2022-11-11 | - |
dc.identifier.isbn | 9783031198236 | - |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.uri | http://hdl.handle.net/10722/340432 | - |
dc.description.abstract | <p>In this paper, we present a generalizable model-free 6-DoF object pose estimator called Gen6D. Existing generalizable pose estimators either need the high-quality object models or require additional depth maps or object masks in test time, which significantly limits their application scope. In contrast, our pose estimator only requires some posed images of the unseen object and is able to accurately predict poses of the object in arbitrary environments. Gen6D consists of an object detector, a viewpoint selector and a pose refiner, all of which do not require the 3D object model and can generalize to unseen objects. Experiments show that Gen6D achieves state-of-the-art results on two model-free datasets: the MOPED dataset and a new GenMOP dataset. In addition, on the LINEMOD dataset, Gen6D achieves competitive results compared with instance-specific pose estimators. Project page: <a href="https://liuyuan-pal.github.io/Gen6D/">https://liuyuan-pal.github.io/Gen6D/.</a></p> | - |
dc.language | eng | - |
dc.publisher | Springer | - |
dc.relation.ispartof | Lecture Notes in Computer Science | - |
dc.subject | 6-Dof object pose estimation | - |
dc.subject | Camera pose estimation | - |
dc.title | Gen6D: Generalizable Model-Free 6-DoF Object Pose Estimation from RGB Images | - |
dc.type | Book_Chapter | - |
dc.identifier.doi | 10.1007/978-3-031-19824-3_18 | - |
dc.identifier.scopus | eid_2-s2.0-85144501792 | - |
dc.identifier.volume | 13692 LNCS | - |
dc.identifier.spage | 298 | - |
dc.identifier.epage | 315 | - |
dc.identifier.eissn | 1611-3349 | - |
dc.identifier.isi | WOS:000903565400018 | - |
dc.identifier.eisbn | 9783031198243 | - |
dc.identifier.issnl | 0302-9743 | - |