File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1002/jmri.29211
- Scopus: eid_2-s2.0-85181191623
- WOS: WOS:001135008000001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Deep Learning Algorithm of the SPARCC Scoring System in SI Joint MRI
Title | Deep Learning Algorithm of the SPARCC Scoring System in SI Joint MRI |
---|---|
Authors | |
Keywords | deep learning sacroiliitis SPARCC scoring system STIR-MRI |
Issue Date | 2-Jan-2024 |
Publisher | Wiley |
Citation | Journal of Magnetic Resonance Imaging, 2024 How to Cite? |
Abstract | BackgroundThe Spondyloarthritis Research Consortium of Canada (SPARCC) scoring system is a sacroiliitis grading system. PurposeTo develop a deep learning-based pipeline for grading sacroiliitis using the SPARCC scoring system. Study TypeProspective. PopulationThe study included 389 participants (42.2-year-old, 44.6% female, 317/35/37 for training/validation/testing). A pretrained algorithm was used to differentiate image with/without sacroiliitis. Field Strength/Sequence3-T, short tau inversion recovery (STIR) sequence, fast spine echo. AssessmentThe regions of interest as ground truth for models' training were identified by a rheumatologist (HYC, 10-year-experience) and a radiologist (KHL, 6-year-experience) using the Assessment of Spondyloarthritis International Society definition of MRI sacroiliitis independently. Another radiologist (YYL, 4.5-year-experience) solved the discrepancies. The bone marrow edema (BME) and sacroiliac region models were for segmentation. Frangi-filter detected vessels used as intense reference. Deep learning pipeline scored using SPARCC scoring system evaluating presence and features of BMEs. A rheumatologist (SCWC, 6-year-experience) and a radiologist (VWHL, 14-year-experience) scored using the SPARCC scoring system once. The radiologist (YYL) scored twice with 5-day interval. Statistical TestsIndependent samples t-tests and Chi-squared tests were used. Interobserver and intraobserver reliability by intraclass correlation coefficient (ICC) and Pearson coefficient evaluated consistency between readers and the deep learning pipeline. We evaluated the performance using sensitivity, accuracy, positive predictive value, and Dice coefficient. A P-value <0.05 was considered statistically significant. ResultsThe ICC and the Pearson coefficient between the SPARCC scores from three readers and the deep learning pipeline were 0.83 and 0.86, respectively. The sensitivity in identifying BME and accuracy of identifying SI joints and blood vessels was 0.83, 0.90, and 0.88, respectively. The dice coefficients were 0.82 (sacrum) and 0.80 (ilium). Data ConclusionThe high consistency with human readers indicated that deep learning pipeline may provide a SPARCC-informed deep learning approach for scoring of STIR images in spondyloarthritis. Evidence Level1 Technical EfficacyStage 2 |
Persistent Identifier | http://hdl.handle.net/10722/340089 |
ISSN | 2023 Impact Factor: 3.3 2023 SCImago Journal Rankings: 1.339 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lin, Yingying | - |
dc.contributor.author | Cao, Peng | - |
dc.contributor.author | Chan, Shirley Chiu Wai | - |
dc.contributor.author | Lee, Kam Ho | - |
dc.contributor.author | Lau, Vince Wing Hang | - |
dc.contributor.author | Chung, Ho Yin | - |
dc.date.accessioned | 2024-03-11T10:41:34Z | - |
dc.date.available | 2024-03-11T10:41:34Z | - |
dc.date.issued | 2024-01-02 | - |
dc.identifier.citation | Journal of Magnetic Resonance Imaging, 2024 | - |
dc.identifier.issn | 1053-1807 | - |
dc.identifier.uri | http://hdl.handle.net/10722/340089 | - |
dc.description.abstract | <h3>Background</h3><p>The Spondyloarthritis Research Consortium of Canada (SPARCC) scoring system is a sacroiliitis grading system.</p><h3>Purpose</h3><p>To develop a deep learning-based pipeline for grading sacroiliitis using the SPARCC scoring system.</p><h3>Study Type</h3><p>Prospective.</p><h3>Population</h3><p>The study included 389 participants (42.2-year-old, 44.6% female, 317/35/37 for training/validation/testing). A pretrained algorithm was used to differentiate image with/without sacroiliitis.</p><h3>Field Strength/Sequence</h3><p>3-T, short tau inversion recovery (STIR) sequence, fast spine echo.</p><h3>Assessment</h3><p>The regions of interest as ground truth for models' training were identified by a rheumatologist (HYC, 10-year-experience) and a radiologist (KHL, 6-year-experience) using the Assessment of Spondyloarthritis International Society definition of MRI sacroiliitis independently. Another radiologist (YYL, 4.5-year-experience) solved the discrepancies. The bone marrow edema (BME) and sacroiliac region models were for segmentation. Frangi-filter detected vessels used as intense reference. Deep learning pipeline scored using SPARCC scoring system evaluating presence and features of BMEs. A rheumatologist (SCWC, 6-year-experience) and a radiologist (VWHL, 14-year-experience) scored using the SPARCC scoring system once. The radiologist (YYL) scored twice with 5-day interval.</p><h3>Statistical Tests</h3><p>Independent samples <em>t</em>-tests and Chi-squared tests were used. Interobserver and intraobserver reliability by intraclass correlation coefficient (ICC) and Pearson coefficient evaluated consistency between readers and the deep learning pipeline. We evaluated the performance using sensitivity, accuracy, positive predictive value, and Dice coefficient. A <em>P</em>-value <0.05 was considered statistically significant.</p><h3>Results</h3><p>The ICC and the Pearson coefficient between the SPARCC scores from three readers and the deep learning pipeline were 0.83 and 0.86, respectively. The sensitivity in identifying BME and accuracy of identifying SI joints and blood vessels was 0.83, 0.90, and 0.88, respectively. The dice coefficients were 0.82 (sacrum) and 0.80 (ilium).</p><h3>Data Conclusion</h3><p>The high consistency with human readers indicated that deep learning pipeline may provide a SPARCC-informed deep learning approach for scoring of STIR images in spondyloarthritis.</p><h3>Evidence Level</h3><p>1</p><h3>Technical Efficacy</h3><p>Stage 2</p> | - |
dc.language | eng | - |
dc.publisher | Wiley | - |
dc.relation.ispartof | Journal of Magnetic Resonance Imaging | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.subject | deep learning | - |
dc.subject | sacroiliitis | - |
dc.subject | SPARCC scoring system | - |
dc.subject | STIR-MRI | - |
dc.title | Deep Learning Algorithm of the SPARCC Scoring System in SI Joint MRI | - |
dc.type | Article | - |
dc.identifier.doi | 10.1002/jmri.29211 | - |
dc.identifier.scopus | eid_2-s2.0-85181191623 | - |
dc.identifier.eissn | 1522-2586 | - |
dc.identifier.isi | WOS:001135008000001 | - |
dc.identifier.issnl | 1053-1807 | - |