File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.jhepr.2023.100895
- Scopus: eid_2-s2.0-85174465829
- WOS: WOS:001105367000001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Arachidonic acid activates NLRP3 inflammasome in MDSCs via FATP2 to promote post-transplant tumour recurrence in steatotic liver grafts
Title | Arachidonic acid activates NLRP3 inflammasome in MDSCs via FATP2 to promote post-transplant tumour recurrence in steatotic liver grafts |
---|---|
Authors | |
Keywords | Inflammasome Lipid metabolism MDSC Steatotic liver graft Tumour recurrence |
Issue Date | 21-Aug-2023 |
Publisher | Elsevier |
Citation | JHEP Reports, 2023, v. 5, n. 12 How to Cite? |
Abstract | Background & AimsThe steatotic grafts have been applied in liver transplantation frequently owing to the high incidence of non-alcoholic fatty liver disease. However, fatty livers are vulnerable to graft injury. Myeloid-derived suppressor cell (MDSC) recruitment during liver graft injury promotes tumour recurrence. Lipid metabolism exerts the immunological influence on MDSCs in tumour progression. Here, we aimed to explore the role and mechanism of inflammasome activation in MDSCs induced by lipid metabolism during fatty liver graft injury and the subsequent effects on tumour recurrence. MethodsMDSC populations and nucleotide-binding oligomerisation domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome levels were investigated in a clinical cohort and a rat liver transplantation model. The mechanism of NLRP3 activation by specific fatty acids was explored in mouse hepatic ischaemia/reperfusion injury (IRI) with tumour recurrence model and in vitro studies. ResultsMDSC populations and NLRP3 levels were increased with higher tumour recurrent rate in patients using steatotic grafts. NLRP3 was upregulated in MDSCs with lipid accumulation post mouse fatty liver IRI. Mechanistically, arachidonic acid was discovered to activate NLRP3 inflammasome in MDSCs through fatty acid transport protein 2 (FATP2), which was identified by screening lipid uptake receptors. The mitochondrial dysfunction with enhanced reactive oxygen species bridged arachidonic acid uptake and NLRP3 activation in MDSCs, which subsequently stimulated CD4+ T cells producing more IL-17 in fatty liver IRI. Blockade of FATP2 inhibited NLRP3 activation in MDSCs, IL-17 production in CD4+ T cells, and the tumour recurrence post fatty liver IRI. ConclusionsDuring fatty liver graft injury, arachidonic acid activated NLRP3 inflammasome in MDSCs through FATP2, which subsequently stimulated CD4+ T cells producing IL-17 to promote tumour recurrence post transplantation. |
Persistent Identifier | http://hdl.handle.net/10722/339428 |
ISSN | 2023 Impact Factor: 9.5 2023 SCImago Journal Rankings: 3.409 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Liu, Hui | - |
dc.contributor.author | Yeung, Wai Ho Oscar | - |
dc.contributor.author | Pang, Li | - |
dc.contributor.author | Liu, Jiang | - |
dc.contributor.author | Liu, Xiao Bing | - |
dc.contributor.author | Ng, Kevin Tak Pan | - |
dc.contributor.author | Zhang, Qingmei | - |
dc.contributor.author | Qiu, Wen Qi | - |
dc.contributor.author | Zhu, Yueqin | - |
dc.contributor.author | Ding, Tao | - |
dc.contributor.author | Wang, Zhe | - |
dc.contributor.author | Zhu, Ji Ye | - |
dc.contributor.author | Lo, Chung Mau | - |
dc.contributor.author | Man, Kwan | - |
dc.date.accessioned | 2024-03-11T10:36:32Z | - |
dc.date.available | 2024-03-11T10:36:32Z | - |
dc.date.issued | 2023-08-21 | - |
dc.identifier.citation | JHEP Reports, 2023, v. 5, n. 12 | - |
dc.identifier.issn | 2589-5559 | - |
dc.identifier.uri | http://hdl.handle.net/10722/339428 | - |
dc.description.abstract | <h3>Background & Aims</h3><p>The steatotic grafts have been applied in liver transplantation frequently owing to the high incidence of non-alcoholic fatty liver disease. However, fatty livers are vulnerable to graft injury. Myeloid-derived suppressor cell (MDSC) recruitment during liver graft injury promotes tumour recurrence. Lipid metabolism exerts the immunological influence on MDSCs in tumour progression. Here, we aimed to explore the role and mechanism of inflammasome activation in MDSCs induced by lipid metabolism during fatty liver graft injury and the subsequent effects on tumour recurrence.</p><h3>Methods</h3><p>MDSC populations and nucleotide-binding oligomerisation domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome levels were investigated in a clinical cohort and a rat liver transplantation model. The mechanism of NLRP3 activation by specific fatty acids was explored in mouse hepatic ischaemia/reperfusion injury (IRI) with tumour recurrence model and <em>in vitro</em> studies.</p><h3>Results</h3><p>MDSC populations and NLRP3 levels were increased with higher tumour recurrent rate in patients using steatotic grafts. NLRP3 was upregulated in MDSCs with lipid accumulation post mouse fatty liver IRI. Mechanistically, arachidonic acid was discovered to activate NLRP3 inflammasome in MDSCs through fatty acid transport protein 2 (FATP2), which was identified by screening lipid uptake receptors. The mitochondrial dysfunction with enhanced reactive oxygen species bridged arachidonic acid uptake and NLRP3 activation in MDSCs, which subsequently stimulated CD4<sup>+</sup> T cells producing more IL-17 in fatty liver IRI. Blockade of FATP2 inhibited NLRP3 activation in MDSCs, IL-17 production in CD4<sup>+</sup> T cells, and the tumour recurrence post fatty liver IRI.</p><h3>Conclusions</h3><p>During fatty liver graft injury, arachidonic acid activated NLRP3 inflammasome in MDSCs through FATP2, which subsequently stimulated CD4<sup>+</sup> T cells producing IL-17 to promote tumour recurrence post transplantation.</p> | - |
dc.language | eng | - |
dc.publisher | Elsevier | - |
dc.relation.ispartof | JHEP Reports | - |
dc.subject | Inflammasome | - |
dc.subject | Lipid metabolism | - |
dc.subject | MDSC | - |
dc.subject | Steatotic liver graft | - |
dc.subject | Tumour recurrence | - |
dc.title | Arachidonic acid activates NLRP3 inflammasome in MDSCs via FATP2 to promote post-transplant tumour recurrence in steatotic liver grafts | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.jhepr.2023.100895 | - |
dc.identifier.scopus | eid_2-s2.0-85174465829 | - |
dc.identifier.volume | 5 | - |
dc.identifier.issue | 12 | - |
dc.identifier.eissn | 2589-5559 | - |
dc.identifier.isi | WOS:001105367000001 | - |
dc.identifier.issnl | 2589-5559 | - |