File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.20898/j.iass.2016.190.856
- Scopus: eid_2-s2.0-85008893447
- WOS: WOS:000392587600002
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Stress Line Additive Manufacturing (SLAM) for 2.5-D shells
Title | Stress Line Additive Manufacturing (SLAM) for 2.5-D shells |
---|---|
Authors | |
Keywords | Additive manufacturing Conceptual structural design Principal stress lines Topology optimization |
Issue Date | 2016 |
Citation | Journal of the International Association for Shell and Spatial Structures, 2016, v. 57, n. 4, p. 249-259 How to Cite? |
Abstract | In the field of digital fabrication, additive manufacturing (AM, sometimes called 3D printing) has enabled the fabrication of increasingly complex geometries, though the potential of this technology to convey both geometry and structural performance remains unmet. Typical AM processes produce anisotropic products with strength behavior that varies according to filament orientation, thereby limiting its applications in both structural prototypes and end-use parts and products. The paper presents a new integrated software and hardware process that reconsiders the traditional AM technique of fused deposition modelling (FDM) by adding material explicitly along the three-dimensional principal stress trajectories, or stress lines, of 2.5-D structural surfaces. As curves that indicate paths of desired material continuity within a structure, stress lines encode the optimal topology of a structure for a given set of design boundary conditions. The use of a 6-axis industrial robot arm and a heated extruder, designed specifically for this research, provides an alternative to traditional layered manufacturing by allowing for oriented material deposition. The presented research opens new possibilities for structurally performative fabrication. |
Persistent Identifier | http://hdl.handle.net/10722/336705 |
ISSN | 2023 Impact Factor: 1.1 2023 SCImago Journal Rankings: 0.344 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tam, Kam Ming Mark | - |
dc.contributor.author | Mueller, Caitlin T. | - |
dc.contributor.author | Coleman, James R. | - |
dc.contributor.author | Fine, Nicholas W. | - |
dc.date.accessioned | 2024-02-29T06:55:57Z | - |
dc.date.available | 2024-02-29T06:55:57Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | Journal of the International Association for Shell and Spatial Structures, 2016, v. 57, n. 4, p. 249-259 | - |
dc.identifier.issn | 1028-365X | - |
dc.identifier.uri | http://hdl.handle.net/10722/336705 | - |
dc.description.abstract | In the field of digital fabrication, additive manufacturing (AM, sometimes called 3D printing) has enabled the fabrication of increasingly complex geometries, though the potential of this technology to convey both geometry and structural performance remains unmet. Typical AM processes produce anisotropic products with strength behavior that varies according to filament orientation, thereby limiting its applications in both structural prototypes and end-use parts and products. The paper presents a new integrated software and hardware process that reconsiders the traditional AM technique of fused deposition modelling (FDM) by adding material explicitly along the three-dimensional principal stress trajectories, or stress lines, of 2.5-D structural surfaces. As curves that indicate paths of desired material continuity within a structure, stress lines encode the optimal topology of a structure for a given set of design boundary conditions. The use of a 6-axis industrial robot arm and a heated extruder, designed specifically for this research, provides an alternative to traditional layered manufacturing by allowing for oriented material deposition. The presented research opens new possibilities for structurally performative fabrication. | - |
dc.language | eng | - |
dc.relation.ispartof | Journal of the International Association for Shell and Spatial Structures | - |
dc.subject | Additive manufacturing | - |
dc.subject | Conceptual structural design | - |
dc.subject | Principal stress lines | - |
dc.subject | Topology optimization | - |
dc.title | Stress Line Additive Manufacturing (SLAM) for 2.5-D shells | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.20898/j.iass.2016.190.856 | - |
dc.identifier.scopus | eid_2-s2.0-85008893447 | - |
dc.identifier.volume | 57 | - |
dc.identifier.issue | 4 | - |
dc.identifier.spage | 249 | - |
dc.identifier.epage | 259 | - |
dc.identifier.eissn | 1996-9015 | - |
dc.identifier.isi | WOS:000392587600002 | - |