File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Programmable van-der-Waals heterostructure-enabled optoelectronic synaptic floating-gate transistors with ultra-low energy consumption

TitleProgrammable van-der-Waals heterostructure-enabled optoelectronic synaptic floating-gate transistors with ultra-low energy consumption
Authors
Keywordsfloat-gating transistor
optoelectronic synapses
programmable synaptic plasticity
ultra-low energy consumption
van-der-Waals heterostructures
Issue Date2022
Citation
InfoMat, 2022, v. 4, n. 10, article no. e12317 How to Cite?
AbstractVan der Waals (vdW) heterostructures provide a unique opportunity to develop various electronic and optoelectronic devices with specific functions by designing novel device structures, especially for bioinspired neuromorphic optoelectronic devices, which require the integration of nonvolatile memory and excellent optical responses. Here, we demonstrate a programmable optoelectronic synaptic floating-gate transistor based on multilayer graphene/h-BN/MoS2 vdW heterostructures, where both plasticity emulation and modulation were successfully realized in a single device. The dynamic tunneling process of photogenerated carriers through the as-fabricated vdW heterostructures contributed to a large memory ratio (105) between program and erase states. Our device can work as a functional or silent synapse by applying a program/erase voltage spike as a modulatory signal to determine the response to light stimulation, leading to a programmable operation in optoelectronic synaptic transistors. Moreover, an ultra-low energy consumption per light spike event (~2.5 fJ) was obtained in the program state owing to a suppressed noise current by program operation in our floating-gate transistor. This study proposes a feasible strategy to improve the functions of optoelectronic synaptic devices with ultra-low energy consumption based on vdW heterostructures designed for highly efficient artificial neural networks. (Figure presented.).
Persistent Identifierhttp://hdl.handle.net/10722/335394
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorSun, Yilin-
dc.contributor.authorLi, Mingjie-
dc.contributor.authorDing, Yingtao-
dc.contributor.authorWang, Huaipeng-
dc.contributor.authorWang, Han-
dc.contributor.authorChen, Zhiming-
dc.contributor.authorXie, Dan-
dc.date.accessioned2023-11-17T08:25:31Z-
dc.date.available2023-11-17T08:25:31Z-
dc.date.issued2022-
dc.identifier.citationInfoMat, 2022, v. 4, n. 10, article no. e12317-
dc.identifier.urihttp://hdl.handle.net/10722/335394-
dc.description.abstractVan der Waals (vdW) heterostructures provide a unique opportunity to develop various electronic and optoelectronic devices with specific functions by designing novel device structures, especially for bioinspired neuromorphic optoelectronic devices, which require the integration of nonvolatile memory and excellent optical responses. Here, we demonstrate a programmable optoelectronic synaptic floating-gate transistor based on multilayer graphene/h-BN/MoS2 vdW heterostructures, where both plasticity emulation and modulation were successfully realized in a single device. The dynamic tunneling process of photogenerated carriers through the as-fabricated vdW heterostructures contributed to a large memory ratio (105) between program and erase states. Our device can work as a functional or silent synapse by applying a program/erase voltage spike as a modulatory signal to determine the response to light stimulation, leading to a programmable operation in optoelectronic synaptic transistors. Moreover, an ultra-low energy consumption per light spike event (~2.5 fJ) was obtained in the program state owing to a suppressed noise current by program operation in our floating-gate transistor. This study proposes a feasible strategy to improve the functions of optoelectronic synaptic devices with ultra-low energy consumption based on vdW heterostructures designed for highly efficient artificial neural networks. (Figure presented.).-
dc.languageeng-
dc.relation.ispartofInfoMat-
dc.subjectfloat-gating transistor-
dc.subjectoptoelectronic synapses-
dc.subjectprogrammable synaptic plasticity-
dc.subjectultra-low energy consumption-
dc.subjectvan-der-Waals heterostructures-
dc.titleProgrammable van-der-Waals heterostructure-enabled optoelectronic synaptic floating-gate transistors with ultra-low energy consumption-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1002/inf2.12317-
dc.identifier.scopuseid_2-s2.0-85128728785-
dc.identifier.volume4-
dc.identifier.issue10-
dc.identifier.spagearticle no. e12317-
dc.identifier.epagearticle no. e12317-
dc.identifier.eissn2567-3165-
dc.identifier.isiWOS:000785929700001-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats