File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Bandgap Extraction at 10 K to Enable Leakage Control in Carbon Nanotube MOSFETs

TitleBandgap Extraction at 10 K to Enable Leakage Control in Carbon Nanotube MOSFETs
Authors
Keywordsband-to-band tunneling
bandgap extraction
Carbon nanotube
CMOS
leakage current
MOSFET
Issue Date2022
Citation
IEEE Electron Device Letters, 2022, v. 43, n. 3, p. 490-493 How to Cite?
AbstractCarbon nanotube (CNT) transistors exemplify the fundamental tradeoff between desirable high mobility and undesirable leakage current due to the small effective mass and bandgap. To understand leakage current limits in high-speed CNT transistors, electrical bandgaps are extracted on 12 single-CNT top-gate MOSFETs from the energy gap between thermionic emission and band-to-band tunneling (BTBT) at 10 K. At 300 K the minimum IOFF at 0.5 V VDS is analyzed as a function of bandgap between 0.96 eV and 0.43 eV with IOFF-MINfrom 0.2 pA/CNT to 15 nA/CNT. NEGF simulation validates the bandgap extraction methodology and reproduces the experimental MOSFET IOFF-MIN data. A TCAD model calibrated to this work's leakage data projects the accessible ION-IOFF design space bounded by CNT bandgap, indicating EG > 0.65 eV (dCNT < 1.3 nm) is needed to achieve 100 nA/ $\mu \text{m}$ at 0.5 V VDD and 250 CNT/ $\mu \text{m}$ for channel length above 20 nm. An EG of 1.06 eV (dCNT = 0.8 nm) can deliver $2750\times $ tunable range of IOFF by adjusting VT, which exceeds the $400\times $ tunable range of IOFF used in Si CMOS platform technologies.
Persistent Identifierhttp://hdl.handle.net/10722/335380
ISSN
2023 Impact Factor: 4.1
2023 SCImago Journal Rankings: 1.250
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLin, Qing-
dc.contributor.authorPitner, Gregory-
dc.contributor.authorGilardi, Carlo-
dc.contributor.authorSu, Sheng Kai-
dc.contributor.authorZhang, Zichen-
dc.contributor.authorChen, Edward-
dc.contributor.authorBandaru, Prabhakar-
dc.contributor.authorKummel, Andrew-
dc.contributor.authorWang, Han-
dc.contributor.authorPasslack, Matthias-
dc.contributor.authorMitra, Subhasish-
dc.contributor.authorWong, H. S.Philip-
dc.date.accessioned2023-11-17T08:25:24Z-
dc.date.available2023-11-17T08:25:24Z-
dc.date.issued2022-
dc.identifier.citationIEEE Electron Device Letters, 2022, v. 43, n. 3, p. 490-493-
dc.identifier.issn0741-3106-
dc.identifier.urihttp://hdl.handle.net/10722/335380-
dc.description.abstractCarbon nanotube (CNT) transistors exemplify the fundamental tradeoff between desirable high mobility and undesirable leakage current due to the small effective mass and bandgap. To understand leakage current limits in high-speed CNT transistors, electrical bandgaps are extracted on 12 single-CNT top-gate MOSFETs from the energy gap between thermionic emission and band-to-band tunneling (BTBT) at 10 K. At 300 K the minimum IOFF at 0.5 V VDS is analyzed as a function of bandgap between 0.96 eV and 0.43 eV with IOFF-MINfrom 0.2 pA/CNT to 15 nA/CNT. NEGF simulation validates the bandgap extraction methodology and reproduces the experimental MOSFET IOFF-MIN data. A TCAD model calibrated to this work's leakage data projects the accessible ION-IOFF design space bounded by CNT bandgap, indicating EG > 0.65 eV (dCNT < 1.3 nm) is needed to achieve 100 nA/ $\mu \text{m}$ at 0.5 V VDD and 250 CNT/ $\mu \text{m}$ for channel length above 20 nm. An EG of 1.06 eV (dCNT = 0.8 nm) can deliver $2750\times $ tunable range of IOFF by adjusting VT, which exceeds the $400\times $ tunable range of IOFF used in Si CMOS platform technologies.-
dc.languageeng-
dc.relation.ispartofIEEE Electron Device Letters-
dc.subjectband-to-band tunneling-
dc.subjectbandgap extraction-
dc.subjectCarbon nanotube-
dc.subjectCMOS-
dc.subjectleakage current-
dc.subjectMOSFET-
dc.titleBandgap Extraction at 10 K to Enable Leakage Control in Carbon Nanotube MOSFETs-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1109/LED.2022.3141692-
dc.identifier.scopuseid_2-s2.0-85122891659-
dc.identifier.volume43-
dc.identifier.issue3-
dc.identifier.spage490-
dc.identifier.epage493-
dc.identifier.eissn1558-0563-
dc.identifier.isiWOS:000761656500042-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats