File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1115/1.2885159
- Scopus: eid_2-s2.0-44349157857
- WOS: WOS:000255880300006
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Thermal properties of metal-coated vertically aligned single-wall nanotube arrays
Title | Thermal properties of metal-coated vertically aligned single-wall nanotube arrays |
---|---|
Authors | |
Keywords | Single wall carbon nanotube Thermal interface material Thermal interface resistance Thermore-flectance thermometry Vertically aligned carbon nanotubes |
Issue Date | 2008 |
Citation | Journal of Heat Transfer, 2008, v. 130, n. 5, article no. 052401 How to Cite? |
Abstract | Owing to their high thermal conductivities, carbon nanotubes (CNTs) are promising for use in advanced thermal interface materials. While there has been much previous research on the properties of isolated CNTs, there are few thermal data for aligned films of single wall nanotubes. Furthermore, such data for nanotube films do not separate volume from interface thermal resistances. This paper uses a thermoreflectance technique to measure the volumetric heat capacity and thermal interface resistance and to place a lower bound on the internal volume resistance of a vertically aligned single wall CNT array capped with an aluminum film and palladium adhesion layer. The total thermal resistance of the structure, including volume and interface contributions, is 12 m2 K MW-1. The data show that the top and bottom interfaces of the CNT array strongly reduce its effective vertical thermal conductivity. A low measured value for the effective volumetric heat capacity of the CNT array shows that only a small volume fraction of the CNTs participate in thermal transport by bridging the two interfaces. A thermal model of transport in the array exploits the volumetric heat capacity to extract an individual CNT-metal contact resistance of 10 m2 K1 GW-1 (based on the annular area Aa=πdb), which is equivalent to the volume resistance of 14 nm of thermal SiO2. This work strongly indicates that increasing the fraction of CNT-metal contacts can reduce the total thermal resistance below 1 m2 K MW-1. Copyright © 2008 by ASME. |
Persistent Identifier | http://hdl.handle.net/10722/334171 |
ISSN | 2023 Impact Factor: 2.8 2023 SCImago Journal Rankings: 0.425 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Panzer, M. A. | - |
dc.contributor.author | Zhang, G. | - |
dc.contributor.author | Mann, D. | - |
dc.contributor.author | Hu, X. | - |
dc.contributor.author | Pop, E. | - |
dc.contributor.author | Dai, H. | - |
dc.contributor.author | Goodson, K. E. | - |
dc.date.accessioned | 2023-10-20T06:46:15Z | - |
dc.date.available | 2023-10-20T06:46:15Z | - |
dc.date.issued | 2008 | - |
dc.identifier.citation | Journal of Heat Transfer, 2008, v. 130, n. 5, article no. 052401 | - |
dc.identifier.issn | 0022-1481 | - |
dc.identifier.uri | http://hdl.handle.net/10722/334171 | - |
dc.description.abstract | Owing to their high thermal conductivities, carbon nanotubes (CNTs) are promising for use in advanced thermal interface materials. While there has been much previous research on the properties of isolated CNTs, there are few thermal data for aligned films of single wall nanotubes. Furthermore, such data for nanotube films do not separate volume from interface thermal resistances. This paper uses a thermoreflectance technique to measure the volumetric heat capacity and thermal interface resistance and to place a lower bound on the internal volume resistance of a vertically aligned single wall CNT array capped with an aluminum film and palladium adhesion layer. The total thermal resistance of the structure, including volume and interface contributions, is 12 m2 K MW-1. The data show that the top and bottom interfaces of the CNT array strongly reduce its effective vertical thermal conductivity. A low measured value for the effective volumetric heat capacity of the CNT array shows that only a small volume fraction of the CNTs participate in thermal transport by bridging the two interfaces. A thermal model of transport in the array exploits the volumetric heat capacity to extract an individual CNT-metal contact resistance of 10 m2 K1 GW-1 (based on the annular area Aa=πdb), which is equivalent to the volume resistance of 14 nm of thermal SiO2. This work strongly indicates that increasing the fraction of CNT-metal contacts can reduce the total thermal resistance below 1 m2 K MW-1. Copyright © 2008 by ASME. | - |
dc.language | eng | - |
dc.relation.ispartof | Journal of Heat Transfer | - |
dc.subject | Single wall carbon nanotube | - |
dc.subject | Thermal interface material | - |
dc.subject | Thermal interface resistance | - |
dc.subject | Thermore-flectance thermometry | - |
dc.subject | Vertically aligned carbon nanotubes | - |
dc.title | Thermal properties of metal-coated vertically aligned single-wall nanotube arrays | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1115/1.2885159 | - |
dc.identifier.scopus | eid_2-s2.0-44349157857 | - |
dc.identifier.volume | 130 | - |
dc.identifier.issue | 5 | - |
dc.identifier.spage | article no. 052401 | - |
dc.identifier.epage | article no. 052401 | - |
dc.identifier.isi | WOS:000255880300006 | - |