File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Rigidity-Stability relationship in interlocked model complexes containing phenylene-ethynylene-based disubstituted naphthalene and benzene

TitleRigidity-Stability relationship in interlocked model complexes containing phenylene-ethynylene-based disubstituted naphthalene and benzene
Authors
Issue Date2009
Citation
Crystal Growth and Design, 2009, v. 9, n. 5, p. 2300-2309 How to Cite?
AbstractStructural rigidity has been found to be advantageous for molecules if they are to find applications in functioning molecular devices. In the search for an understanding of the relationship between the rigidity and complex stability in mechanically interlocked compounds, the binding abilities of two π-electron-rich model compounds (2 and 4), where rigidity is introduced in the form of phenylacetylene units, toward the π-electron deficient tetracationic cyclophane, cyclobis(paraquat-p-phenylene) (CBPQT 4+), were investigated. 1,4-Bis(2-(2-methoxyethoxy)ethoxy)-2,5-bis(2-phenylethynyl) benzene 2 and 1,5-bis(2-(2-methoxyethoxy)ethoxy)- 2,6-bis(2-phenylethynyl) naphthalene 4 were synthesized, respectively, from the appropriate precursor dibromides 1 and 3 of benzene and naphthalene carrying two methoxyethoxyethoxy side chains. The rigid nature of the compounds 2 and 4 is reflected in the reduced stabilities of their 1:1 complexes with CBPQT 4+. Binding constants for both 2 (100 M -1) and 4 (140 M -1) toward CBPQT 4+ were obtained by isothermal titration microcalorimetry (ITC) in MeCN at 25 °C. Compounds 1-4 were characterized in the solid state by X-ray crystallography. The stabilization within and beyond these molecules is achieved by a combination of intra- and intermolecular [C-H⋯ O], [C-H⋯p], and [π-π] stacking interactions. The diethyleneglycol chains present in compounds 1-4 are folded as a consequence of both intra- and intermolecular hydrogen bonds. The preorganized structures in both precursors 1 and 3 are repeated in both model compounds 2 and 4. In the structures of compounds 2 and 4, the geometry of the rigid backbone is differentsthe two terminal phenyl groups are twisted with respect to the central benzenoid ring in compound 2 and roughly perpendicular to the plane central naphthalene core in compound 4. To understand the significantly decreased stabilities of these complexes toward rigid guest molecules, relative to more flexible systems, we performed density functional theory (DFT) calculations using the newly developed M06-suite of density functionals. We conclude that the reduced binding abilities are a consequence of electronic and not steric factors, originating from the extended delocalization of the aromatic system. © 2009 American Chemical Society.
Persistent Identifierhttp://hdl.handle.net/10722/332883
ISSN
2023 Impact Factor: 3.2
2023 SCImago Journal Rankings: 0.649
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorYoon, Il-
dc.contributor.authorBenítez, Diego-
dc.contributor.authorMiljanić, Ognjen Š-
dc.contributor.authorZhao, Yan Li-
dc.contributor.authorTkatchouk, Ekaterina-
dc.contributor.authorGoddard, William A.-
dc.contributor.authorStoddart, J. Fraser-
dc.date.accessioned2023-10-06T05:15:03Z-
dc.date.available2023-10-06T05:15:03Z-
dc.date.issued2009-
dc.identifier.citationCrystal Growth and Design, 2009, v. 9, n. 5, p. 2300-2309-
dc.identifier.issn1528-7483-
dc.identifier.urihttp://hdl.handle.net/10722/332883-
dc.description.abstractStructural rigidity has been found to be advantageous for molecules if they are to find applications in functioning molecular devices. In the search for an understanding of the relationship between the rigidity and complex stability in mechanically interlocked compounds, the binding abilities of two π-electron-rich model compounds (2 and 4), where rigidity is introduced in the form of phenylacetylene units, toward the π-electron deficient tetracationic cyclophane, cyclobis(paraquat-p-phenylene) (CBPQT 4+), were investigated. 1,4-Bis(2-(2-methoxyethoxy)ethoxy)-2,5-bis(2-phenylethynyl) benzene 2 and 1,5-bis(2-(2-methoxyethoxy)ethoxy)- 2,6-bis(2-phenylethynyl) naphthalene 4 were synthesized, respectively, from the appropriate precursor dibromides 1 and 3 of benzene and naphthalene carrying two methoxyethoxyethoxy side chains. The rigid nature of the compounds 2 and 4 is reflected in the reduced stabilities of their 1:1 complexes with CBPQT 4+. Binding constants for both 2 (100 M -1) and 4 (140 M -1) toward CBPQT 4+ were obtained by isothermal titration microcalorimetry (ITC) in MeCN at 25 °C. Compounds 1-4 were characterized in the solid state by X-ray crystallography. The stabilization within and beyond these molecules is achieved by a combination of intra- and intermolecular [C-H⋯ O], [C-H⋯p], and [π-π] stacking interactions. The diethyleneglycol chains present in compounds 1-4 are folded as a consequence of both intra- and intermolecular hydrogen bonds. The preorganized structures in both precursors 1 and 3 are repeated in both model compounds 2 and 4. In the structures of compounds 2 and 4, the geometry of the rigid backbone is differentsthe two terminal phenyl groups are twisted with respect to the central benzenoid ring in compound 2 and roughly perpendicular to the plane central naphthalene core in compound 4. To understand the significantly decreased stabilities of these complexes toward rigid guest molecules, relative to more flexible systems, we performed density functional theory (DFT) calculations using the newly developed M06-suite of density functionals. We conclude that the reduced binding abilities are a consequence of electronic and not steric factors, originating from the extended delocalization of the aromatic system. © 2009 American Chemical Society.-
dc.languageeng-
dc.relation.ispartofCrystal Growth and Design-
dc.titleRigidity-Stability relationship in interlocked model complexes containing phenylene-ethynylene-based disubstituted naphthalene and benzene-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1021/cg801106h-
dc.identifier.scopuseid_2-s2.0-66349131312-
dc.identifier.volume9-
dc.identifier.issue5-
dc.identifier.spage2300-
dc.identifier.epage2309-
dc.identifier.eissn1528-7505-
dc.identifier.isiWOS:000265892200043-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats