File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1007/s00138-023-01374-6
- Scopus: eid_2-s2.0-85148433203
- WOS: WOS:000934357500001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Knowledge-based hybrid connectionist models for morphologic reasoning
Title | Knowledge-based hybrid connectionist models for morphologic reasoning |
---|---|
Authors | |
Keywords | AI for robotics Hybrid connectionist symbolic model Morphologic feature recognition |
Issue Date | 12-Feb-2023 |
Publisher | Springer |
Citation | Machine Vision and Applications, 2023, v. 34, n. 2 How to Cite? |
Abstract | Texture morphology perception is essential feedback for robots in tactile-related tasks (such as robot’s electrical palpation, manipulation, or recognition of objects in complex, wet, and dark work conditions). However, it is tough to quantify morphologic information and define morphologic feature. For this reason, it is difficult to use prior tactile experience in detection, which results in large dataset requirements, time costs, and frequent model retraining for new targets. This study introduced a hybrid connectionist symbolic model (HCSM) that integrates prior symbolic human experience and the end-to-end neural network. HCSM requires smaller datasets owing to using a symbolic model based on human knowledge. Moreover, HCSM improves the transferability of detection and interpretation of recognition results. The neural network has the advantage of easy training. The HCSM combines the merits of both connectionist and symbolic models. We have implemented tactile morphologic detection of basic geometry textures (such as bulges and ridges) using the HCSM method. The trained model can be transferred to detect gaps and holes by manual adjustment of the symbolic definition, without model retraining. Similarly, other new morphology can be detected by only modifying the symbolic model. We have compared the recognition performance of the proposed model with that of the traditional classification models, such as LeNet, VGG16, ResNet, XGBoost, and DenseNet. The proposed HCSM model has achieved the best recognition accuracy. Besides, compared with classic classification models, our method is less likely to misrecognize one target as a completely different counterpart, providing a guarantee for generalization boundaries of recognition to a certain degree. |
Persistent Identifier | http://hdl.handle.net/10722/331933 |
ISSN | 2023 Impact Factor: 2.4 2023 SCImago Journal Rankings: 0.657 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | He, Kai | - |
dc.contributor.author | Wang, Wenxue | - |
dc.contributor.author | Li, Gang | - |
dc.contributor.author | Yu, Peng | - |
dc.contributor.author | Tang, Fengzhen | - |
dc.contributor.author | Xi, Ning | - |
dc.contributor.author | Liu, Lianqing | - |
dc.date.accessioned | 2023-09-28T04:59:42Z | - |
dc.date.available | 2023-09-28T04:59:42Z | - |
dc.date.issued | 2023-02-12 | - |
dc.identifier.citation | Machine Vision and Applications, 2023, v. 34, n. 2 | - |
dc.identifier.issn | 0932-8092 | - |
dc.identifier.uri | http://hdl.handle.net/10722/331933 | - |
dc.description.abstract | <div><p>Texture morphology perception is essential feedback for robots in tactile-related tasks (such as robot’s electrical palpation, manipulation, or recognition of objects in complex, wet, and dark work conditions). However, it is tough to quantify morphologic information and define morphologic feature. For this reason, it is difficult to use prior tactile experience in detection, which results in large dataset requirements, time costs, and frequent model retraining for new targets. This study introduced a hybrid connectionist symbolic model (HCSM) that integrates prior symbolic human experience and the end-to-end neural network. HCSM requires smaller datasets owing to using a symbolic model based on human knowledge. Moreover, HCSM improves the transferability of detection and interpretation of recognition results. The neural network has the advantage of easy training. The HCSM combines the merits of both connectionist and symbolic models. We have implemented tactile morphologic detection of basic geometry textures (such as bulges and ridges) using the HCSM method. The trained model can be transferred to detect gaps and holes by manual adjustment of the symbolic definition, without model retraining. Similarly, other new morphology can be detected by only modifying the symbolic model. We have compared the recognition performance of the proposed model with that of the traditional classification models, such as LeNet, VGG16, ResNet, XGBoost, and DenseNet. The proposed HCSM model has achieved the best recognition accuracy. Besides, compared with classic classification models, our method is less likely to misrecognize one target as a completely different counterpart, providing a guarantee for generalization boundaries of recognition to a certain degree.</p></div> | - |
dc.language | eng | - |
dc.publisher | Springer | - |
dc.relation.ispartof | Machine Vision and Applications | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.subject | AI for robotics | - |
dc.subject | Hybrid connectionist symbolic model | - |
dc.subject | Morphologic feature recognition | - |
dc.title | Knowledge-based hybrid connectionist models for morphologic reasoning | - |
dc.type | Article | - |
dc.identifier.doi | 10.1007/s00138-023-01374-6 | - |
dc.identifier.scopus | eid_2-s2.0-85148433203 | - |
dc.identifier.volume | 34 | - |
dc.identifier.issue | 2 | - |
dc.identifier.eissn | 1432-1769 | - |
dc.identifier.isi | WOS:000934357500001 | - |
dc.identifier.issnl | 0932-8092 | - |