File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Programming correlated magnetic states with gate-controlled moire geometry

TitleProgramming correlated magnetic states with gate-controlled moire geometry
Authors
Issue Date21-Jul-2023
PublisherAmerican Association for the Advancement of Science
Citation
Science, 2023, v. 381, n. 6655, p. 325-330 How to Cite?
AbstractThe ability to control the underlying lattice geometry of a system may enable transitions between emergent quantum ground states. We report in situ gate switching between honeycomb and triangular lattice geometries of an electron many-body Hamiltonian in rhombohedral (R)-stacked molybdenum ditelluride (MoTe2) moire bilayers, resulting in switchable magnetic exchange interactions. At zero electric field, we observed a correlated ferromagnetic insulator near one hole per moire unit cell with a widely tunable Curie temperature up to 14 K. Applying an electric field switched the system into a half-filled triangular lattice with antiferromagnetic interactions; further doping this layer-polarized superlattice tuned the antiferromagnetic exchange interaction back to ferromagnetic. Our work demonstrates R-stacked MoTe2 moires to be a laboratory for engineering correlated states with nontrivial topology.
Persistent Identifierhttp://hdl.handle.net/10722/331643
ISSN
2021 Impact Factor: 63.714
2020 SCImago Journal Rankings: 12.556
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorAnderson, E-
dc.contributor.authorFan, FR-
dc.contributor.authorCai, JQ-
dc.contributor.authorHoltzmann, W-
dc.contributor.authorTaniguchi, T-
dc.contributor.authorWatanabe, K-
dc.contributor.authorXiao, D-
dc.contributor.authorYao, W-
dc.contributor.authorXu, XD-
dc.date.accessioned2023-09-21T06:57:37Z-
dc.date.available2023-09-21T06:57:37Z-
dc.date.issued2023-07-21-
dc.identifier.citationScience, 2023, v. 381, n. 6655, p. 325-330-
dc.identifier.issn0036-8075-
dc.identifier.urihttp://hdl.handle.net/10722/331643-
dc.description.abstractThe ability to control the underlying lattice geometry of a system may enable transitions between emergent quantum ground states. We report in situ gate switching between honeycomb and triangular lattice geometries of an electron many-body Hamiltonian in rhombohedral (R)-stacked molybdenum ditelluride (MoTe2) moire bilayers, resulting in switchable magnetic exchange interactions. At zero electric field, we observed a correlated ferromagnetic insulator near one hole per moire unit cell with a widely tunable Curie temperature up to 14 K. Applying an electric field switched the system into a half-filled triangular lattice with antiferromagnetic interactions; further doping this layer-polarized superlattice tuned the antiferromagnetic exchange interaction back to ferromagnetic. Our work demonstrates R-stacked MoTe2 moires to be a laboratory for engineering correlated states with nontrivial topology.-
dc.languageeng-
dc.publisherAmerican Association for the Advancement of Science-
dc.relation.ispartofScience-
dc.titleProgramming correlated magnetic states with gate-controlled moire geometry-
dc.typeArticle-
dc.identifier.doi10.1126/science.adg4268-
dc.identifier.pmid37347950-
dc.identifier.scopuseid_2-s2.0-85165521758-
dc.identifier.volume381-
dc.identifier.issue6655-
dc.identifier.spage325-
dc.identifier.epage330-
dc.identifier.eissn1095-9203-
dc.identifier.isiWOS:001046763100031-
dc.publisher.placeWASHINGTON-
dc.identifier.issnl0036-8075-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats