File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1021/acsami.2c12488
- Scopus: eid_2-s2.0-85138627392
- PMID: 36099395
- WOS: WOS:000864481100001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Ionic Liquid-Reduced Graphene Oxide Membrane with Enhanced Stability for Water Purification
Title | Ionic Liquid-Reduced Graphene Oxide Membrane with Enhanced Stability for Water Purification |
---|---|
Authors | |
Keywords | dye rejection graphene oxide graphene oxide membrane methylimidazolium ionic liquid salt rejection |
Issue Date | 13-Sep-2022 |
Publisher | American Chemical Society |
Citation | ACS Applied Materials and Interfaces, 2022, v. 14, n. 38, p. 43339-43353 How to Cite? |
Abstract | There has been a growing interest in water purification by graphene oxide (GO) laminate membranes due to their exceptional hydrophilicity, high throughput, and extraordinary separation performance originating from their twodimensional and well-defined nanostructure. However, the swelling and stability in an aqueous environment are areas of concern for the GO laminate membranes. Here, a novel methylimidazolium ionic liquid-reduced GO (mimG)-assembled GO laminate membrane (mimG-GO) with remarkable stability was fabricated by a vacuum assisted strategy for water purification. Methylimidazolium-based ionic liquid-reduced graphene oxide (mimG) was prepared by a facile nucleophilic ring-opening mechanism. Fabricated membranes were thoroughly characterized for stability, structural, permeance, and rejection properties in an aqueous environment. A combination of cationic mimG and GO nanosheets improves membrane stability in the aqueous environment via cation-pi interactions and creates nanofluidic channels for facile water transport while yielding significant enhancement in the salt and dye separation performance. The pore size and the number of nanofluidic channels were precisely controlled via material deposition and laminate thickness to remove salts from water. The mimG-GO laminate membrane containing 72.2 mg m(-2) deposition showed a permeance of 14.9 LMH bar(-1), 50% higher than 9.7 LMH bar(-1) of the neat GO laminate membrane, in addition to an increase in Na2SO4 salt rejection from 46.6 to 77.4%, overcoming the flux-rejection trade-off. The mimG-GO laminate membrane also rejected various anionic dyes (i.e., 99.9% for direct red 80 (DR 80), 96.8% for reactive black 5 (RB 5), and 91.4% for methyl orange (MO)). The mimG-GO laminate membrane containing 361.0 mg m(-2) deposition showed the highest rejection for Na2SO4 (92.1%) and 99.9% rejection for DR 80, 99.0% rejection for RB 5, and 98.1% rejection for MO dyes keeping a flux of 2.6 LMH bar(-1). Partial reduction and covalent grafting of ionic liquid moieties on GO helped to enhance the cation-pi interaction between GO laminates, which showed enhanced stability, frictionless water transport, with high salt and dye rejection. Moreover, a simultaneous improvement in water permeance and solute rejection reveals the great potential of ionic liquid-functionalized GO laminate membranes for water-based applications. |
Persistent Identifier | http://hdl.handle.net/10722/331257 |
ISSN | 2023 Impact Factor: 8.3 2023 SCImago Journal Rankings: 2.058 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zambare, RS | - |
dc.contributor.author | Song, XX | - |
dc.contributor.author | Bhuvana, S | - |
dc.contributor.author | Tang, CY | - |
dc.contributor.author | Prince, JSA | - |
dc.contributor.author | Nemade, PR | - |
dc.date.accessioned | 2023-09-21T06:54:06Z | - |
dc.date.available | 2023-09-21T06:54:06Z | - |
dc.date.issued | 2022-09-13 | - |
dc.identifier.citation | ACS Applied Materials and Interfaces, 2022, v. 14, n. 38, p. 43339-43353 | - |
dc.identifier.issn | 1944-8244 | - |
dc.identifier.uri | http://hdl.handle.net/10722/331257 | - |
dc.description.abstract | <p>There has been a growing interest in water purification by graphene oxide (GO) laminate membranes due to their exceptional hydrophilicity, high throughput, and extraordinary separation performance originating from their twodimensional and well-defined nanostructure. However, the swelling and stability in an aqueous environment are areas of concern for the GO laminate membranes. Here, a novel methylimidazolium ionic liquid-reduced GO (mimG)-assembled GO laminate membrane (mimG-GO) with remarkable stability was fabricated by a vacuum assisted strategy for water purification. Methylimidazolium-based ionic liquid-reduced graphene oxide (mimG) was prepared by a facile nucleophilic ring-opening mechanism. Fabricated membranes were thoroughly characterized for stability, structural, permeance, and rejection properties in an aqueous environment. A combination of cationic mimG and GO nanosheets improves membrane stability in the aqueous environment via cation-pi interactions and creates nanofluidic channels for facile water transport while yielding significant enhancement in the salt and dye separation performance. The pore size and the number of nanofluidic channels were precisely controlled via material deposition and laminate thickness to remove salts from water. The mimG-GO laminate membrane containing 72.2 mg m(-2) deposition showed a permeance of 14.9 LMH bar(-1), 50% higher than 9.7 LMH bar(-1) of the neat GO laminate membrane, in addition to an increase in Na2SO4 salt rejection from 46.6 to 77.4%, overcoming the flux-rejection trade-off. The mimG-GO laminate membrane also rejected various anionic dyes (i.e., 99.9% for direct red 80 (DR 80), 96.8% for reactive black 5 (RB 5), and 91.4% for methyl orange (MO)). The mimG-GO laminate membrane containing 361.0 mg m(-2) deposition showed the highest rejection for Na2SO4 (92.1%) and 99.9% rejection for DR 80, 99.0% rejection for RB 5, and 98.1% rejection for MO dyes keeping a flux of 2.6 LMH bar(-1). Partial reduction and covalent grafting of ionic liquid moieties on GO helped to enhance the cation-pi interaction between GO laminates, which showed enhanced stability, frictionless water transport, with high salt and dye rejection. Moreover, a simultaneous improvement in water permeance and solute rejection reveals the great potential of ionic liquid-functionalized GO laminate membranes for water-based applications.</p> | - |
dc.language | eng | - |
dc.publisher | American Chemical Society | - |
dc.relation.ispartof | ACS Applied Materials and Interfaces | - |
dc.subject | dye rejection | - |
dc.subject | graphene oxide | - |
dc.subject | graphene oxide membrane | - |
dc.subject | methylimidazolium ionic liquid | - |
dc.subject | salt rejection | - |
dc.title | Ionic Liquid-Reduced Graphene Oxide Membrane with Enhanced Stability for Water Purification | - |
dc.type | Article | - |
dc.identifier.doi | 10.1021/acsami.2c12488 | - |
dc.identifier.pmid | 36099395 | - |
dc.identifier.scopus | eid_2-s2.0-85138627392 | - |
dc.identifier.volume | 14 | - |
dc.identifier.issue | 38 | - |
dc.identifier.spage | 43339 | - |
dc.identifier.epage | 43353 | - |
dc.identifier.eissn | 1944-8252 | - |
dc.identifier.isi | WOS:000864481100001 | - |
dc.publisher.place | WASHINGTON | - |
dc.identifier.issnl | 1944-8244 | - |