File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1145/3556971
- Scopus: eid_2-s2.0-85146369311
- WOS: WOS:000891615200007
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Edge-Weighted Online Bipartite Matching
Title | Edge-Weighted Online Bipartite Matching |
---|---|
Authors | |
Keywords | Factor-revealing linear program free disposal online bipartite matching online correlated selection primal-dual method |
Issue Date | 17-Nov-2022 |
Publisher | Association for Computing Machinery (ACM) |
Citation | Journal of the ACM, 2022, v. 69, n. 6 How to Cite? |
Abstract | Online bipartite matching is one of the most fundamental problems in the online algorithms literature. Karp, Vazirani, and Vazirani (STOC 1990) gave an elegant algorithm for unweighted bipartite matching that achieves an optimal competitive ratio of 1 - 1/e. Aggarwal et al. (SODA 2011) later generalized their algorithm and analysis to the vertex-weighted case. Little is known, however, about the most general edge-weighted problem aside from the trivial 1/2-competitive greedy algorithm. In this article, we present the first online algorithm that breaks the long-standing 1/2 barrier and achieves a competitive ratio of at least 0.5086. In light of the hardness result of Kapralov, Post, and Vondrak (SODA 2013), which restricts beating a 1/2 competitive ratio for the more general monotone submodular welfare maximization problem, our result can be seen as strong evidence that edge-weighted bipartite matching is strictly easier than submodular welfare maximization in an online setting. The main ingredient in our online matching algorithm is a novel subroutine called online correlated selection (OCS), which takes a sequence of pairs of vertices as input and selects one vertex from each pair. Instead of using a fresh random bit to choose a vertex from each pair, the OCS negatively correlates decisions across different pairs and provides a quantitative measure on the level of correlation. We believe our OCS technique is of independent interest and will find further applications in other online optimization problems. |
Persistent Identifier | http://hdl.handle.net/10722/331153 |
ISSN | 2023 Impact Factor: 2.3 2023 SCImago Journal Rankings: 2.866 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Fahrbach, M | - |
dc.contributor.author | Huang, Z | - |
dc.contributor.author | Tao, R | - |
dc.contributor.author | Zadimoghaddam, M | - |
dc.date.accessioned | 2023-09-21T06:53:12Z | - |
dc.date.available | 2023-09-21T06:53:12Z | - |
dc.date.issued | 2022-11-17 | - |
dc.identifier.citation | Journal of the ACM, 2022, v. 69, n. 6 | - |
dc.identifier.issn | 0004-5411 | - |
dc.identifier.uri | http://hdl.handle.net/10722/331153 | - |
dc.description.abstract | <p>Online bipartite matching is one of the most fundamental problems in the online algorithms literature. Karp, Vazirani, and Vazirani (STOC 1990) gave an elegant algorithm for unweighted bipartite matching that achieves an optimal competitive ratio of 1 - 1/e. Aggarwal et al. (SODA 2011) later generalized their algorithm and analysis to the vertex-weighted case. Little is known, however, about the most general edge-weighted problem aside from the trivial 1/2-competitive greedy algorithm. In this article, we present the first online algorithm that breaks the long-standing 1/2 barrier and achieves a competitive ratio of at least 0.5086. In light of the hardness result of Kapralov, Post, and Vondrak (SODA 2013), which restricts beating a 1/2 competitive ratio for the more general monotone submodular welfare maximization problem, our result can be seen as strong evidence that edge-weighted bipartite matching is strictly easier than submodular welfare maximization in an online setting.</p><p>The main ingredient in our online matching algorithm is a novel subroutine called online correlated selection (OCS), which takes a sequence of pairs of vertices as input and selects one vertex from each pair. Instead of using a fresh random bit to choose a vertex from each pair, the OCS negatively correlates decisions across different pairs and provides a quantitative measure on the level of correlation. We believe our OCS technique is of independent interest and will find further applications in other online optimization problems.</p> | - |
dc.language | eng | - |
dc.publisher | Association for Computing Machinery (ACM) | - |
dc.relation.ispartof | Journal of the ACM | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.subject | Factor-revealing linear program | - |
dc.subject | free disposal | - |
dc.subject | online bipartite matching | - |
dc.subject | online correlated selection | - |
dc.subject | primal-dual method | - |
dc.title | Edge-Weighted Online Bipartite Matching | - |
dc.type | Article | - |
dc.description.nature | published_or_final_version | - |
dc.identifier.doi | 10.1145/3556971 | - |
dc.identifier.scopus | eid_2-s2.0-85146369311 | - |
dc.identifier.volume | 69 | - |
dc.identifier.issue | 6 | - |
dc.identifier.eissn | 1557-735X | - |
dc.identifier.isi | WOS:000891615200007 | - |
dc.identifier.issnl | 0004-5411 | - |