File Download
There are no files associated with this item.
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Conference Paper: Sharper generalization bounds for pairwise learning
Title | Sharper generalization bounds for pairwise learning |
---|---|
Authors | |
Issue Date | 2020 |
Citation | Advances in Neural Information Processing Systems, 2020, v. 2020-December How to Cite? |
Abstract | Pairwise learning refers to learning tasks with loss functions depending on a pair of training examples, which includes ranking and metric learning as specific examples. Recently, there has been an increasing amount of attention on the generalization analysis of pairwise learning to understand its practical behavior. However, the existing stability analysis provides suboptimal high-probability generalization bounds. In this paper, we provide a refined stability analysis by developing generalization bounds which can be vn-times faster than the existing results, where n is the sample size. This implies excess risk bounds of the order O(n-1/2) (up to a logarithmic factor) for both regularized risk minimization and stochastic gradient descent. We also introduce a new on-average stability measure to develop optimistic bounds in a low noise setting. We apply our results to ranking and metric learning, and clearly show the advantage of our generalization bounds over the existing analysis. |
Persistent Identifier | http://hdl.handle.net/10722/329691 |
ISSN | 2020 SCImago Journal Rankings: 1.399 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lei, Yunwen | - |
dc.contributor.author | Ledent, Antoine | - |
dc.contributor.author | Kloft, Marius | - |
dc.date.accessioned | 2023-08-09T03:34:38Z | - |
dc.date.available | 2023-08-09T03:34:38Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Advances in Neural Information Processing Systems, 2020, v. 2020-December | - |
dc.identifier.issn | 1049-5258 | - |
dc.identifier.uri | http://hdl.handle.net/10722/329691 | - |
dc.description.abstract | Pairwise learning refers to learning tasks with loss functions depending on a pair of training examples, which includes ranking and metric learning as specific examples. Recently, there has been an increasing amount of attention on the generalization analysis of pairwise learning to understand its practical behavior. However, the existing stability analysis provides suboptimal high-probability generalization bounds. In this paper, we provide a refined stability analysis by developing generalization bounds which can be vn-times faster than the existing results, where n is the sample size. This implies excess risk bounds of the order O(n-1/2) (up to a logarithmic factor) for both regularized risk minimization and stochastic gradient descent. We also introduce a new on-average stability measure to develop optimistic bounds in a low noise setting. We apply our results to ranking and metric learning, and clearly show the advantage of our generalization bounds over the existing analysis. | - |
dc.language | eng | - |
dc.relation.ispartof | Advances in Neural Information Processing Systems | - |
dc.title | Sharper generalization bounds for pairwise learning | - |
dc.type | Conference_Paper | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.scopus | eid_2-s2.0-85102123715 | - |
dc.identifier.volume | 2020-December | - |