File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Local Rademacher complexity bounds based on covering numbers

TitleLocal Rademacher complexity bounds based on covering numbers
Authors
KeywordsCovering numbers
Learning theory
Local Rademacher complexity
Issue Date2016
Citation
Neurocomputing, 2016, v. 218, p. 320-330 How to Cite?
AbstractThis paper provides a general result on controlling local Rademacher complexities, which captures in an elegant form to relate complexities with constraints on expected norms to the corresponding ones with constraints on empirical norms. This result is convenient to apply and could yield refined local Rademacher complexity bounds for function classes satisfying general entropy conditions. We demonstrate the power of our complexity bounds by applying them to simplify the derivation of effective generalization error bounds.
Persistent Identifierhttp://hdl.handle.net/10722/329422
ISSN
2023 Impact Factor: 5.5
2023 SCImago Journal Rankings: 1.815
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLei, Yunwen-
dc.contributor.authorDing, Lixin-
dc.contributor.authorBi, Yingzhou-
dc.date.accessioned2023-08-09T03:32:40Z-
dc.date.available2023-08-09T03:32:40Z-
dc.date.issued2016-
dc.identifier.citationNeurocomputing, 2016, v. 218, p. 320-330-
dc.identifier.issn0925-2312-
dc.identifier.urihttp://hdl.handle.net/10722/329422-
dc.description.abstractThis paper provides a general result on controlling local Rademacher complexities, which captures in an elegant form to relate complexities with constraints on expected norms to the corresponding ones with constraints on empirical norms. This result is convenient to apply and could yield refined local Rademacher complexity bounds for function classes satisfying general entropy conditions. We demonstrate the power of our complexity bounds by applying them to simplify the derivation of effective generalization error bounds.-
dc.languageeng-
dc.relation.ispartofNeurocomputing-
dc.subjectCovering numbers-
dc.subjectLearning theory-
dc.subjectLocal Rademacher complexity-
dc.titleLocal Rademacher complexity bounds based on covering numbers-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.neucom.2016.08.074-
dc.identifier.scopuseid_2-s2.0-84994145100-
dc.identifier.volume218-
dc.identifier.spage320-
dc.identifier.epage330-
dc.identifier.eissn1872-8286-
dc.identifier.isiWOS:000388053700035-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats