File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Refined rademacher chaos complexity bounds with applications to the multikernel learning problem

TitleRefined rademacher chaos complexity bounds with applications to the multikernel learning problem
Authors
Issue Date2014
Citation
Neural Computation, 2014, v. 26, n. 4, p. 739-760 How to Cite?
AbstractEstimating the Rademacher chaos complexity of order two is important for understanding the performance of multikernel learning (MKL) machines. In this letter, we develop a novel entropy integral for Rademacher chaos complexities. As compared to the previous bounds, our result is much improved in that it introduces an adjustable parameter ∈ to prohibit the divergence of the involved integral. With the use of the iteration technique in Steinwart and Scovel (2007), we also apply our Rademacher chaos complexity bound to the MKL problems and improve existing learning rates. © 2014 Massachusetts Institute of Technology.
Persistent Identifierhttp://hdl.handle.net/10722/329312
ISSN
2023 Impact Factor: 2.7
2023 SCImago Journal Rankings: 0.948
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLei, Yunwen-
dc.contributor.authorDing, Lixin-
dc.date.accessioned2023-08-09T03:31:54Z-
dc.date.available2023-08-09T03:31:54Z-
dc.date.issued2014-
dc.identifier.citationNeural Computation, 2014, v. 26, n. 4, p. 739-760-
dc.identifier.issn0899-7667-
dc.identifier.urihttp://hdl.handle.net/10722/329312-
dc.description.abstractEstimating the Rademacher chaos complexity of order two is important for understanding the performance of multikernel learning (MKL) machines. In this letter, we develop a novel entropy integral for Rademacher chaos complexities. As compared to the previous bounds, our result is much improved in that it introduces an adjustable parameter ∈ to prohibit the divergence of the involved integral. With the use of the iteration technique in Steinwart and Scovel (2007), we also apply our Rademacher chaos complexity bound to the MKL problems and improve existing learning rates. © 2014 Massachusetts Institute of Technology.-
dc.languageeng-
dc.relation.ispartofNeural Computation-
dc.titleRefined rademacher chaos complexity bounds with applications to the multikernel learning problem-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1162/NECO_a_00566-
dc.identifier.pmid24479777-
dc.identifier.scopuseid_2-s2.0-84896853512-
dc.identifier.volume26-
dc.identifier.issue4-
dc.identifier.spage739-
dc.identifier.epage760-
dc.identifier.eissn1530-888X-
dc.identifier.isiWOS:000332459100005-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats