File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Multifunctional Macroassembled Graphene Nanofilms with High Crystallinity

TitleMultifunctional Macroassembled Graphene Nanofilms with High Crystallinity
Authors
Keywordsgraphene nanofilms
high crystallinity
macroassembly
terahertz sensors
thermoacoustic devices
Issue Date2021
Citation
Advanced Materials, 2021, v. 33, n. 49, article no. 2104195 How to Cite?
AbstractA “cooling–contraction” method to separate large-area (up to 4.2 cm in lateral size) graphene oxide (GO)-assembled films (of nanoscale thickness) from substrates is reported. Heat treatment at 3000 °C of such free-standing macroscale films yields highly crystalline “macroassembled graphene nanofilms” (nMAGs) with 16–48 nm thickness. These nMAGs present tensile strength of 5.5–11.3 GPa (with ≈3 µm gauge length), electrical conductivity of 1.8–2.1 MS m−1, thermal conductivity of 2027–2820 W m−1 K−1, and carrier relaxation time up to ≈23 ps. As a demonstration application, an nMAG-based sound-generator shows a 30 µs response and sound pressure level of 89 dB at 1 W cm−2. A THz metasurface fabricated from nMAG has a light response of 8.2% for 0.159 W mm−2 and can detect down to 0.01 ppm of glucose. The approach provides a straightforward way to form highly crystallized graphene nanofilms from low-cost GO sheets.
Persistent Identifierhttp://hdl.handle.net/10722/326301
ISSN
2021 Impact Factor: 32.086
2020 SCImago Journal Rankings: 10.707

 

DC FieldValueLanguage
dc.contributor.authorPeng, Li-
dc.contributor.authorHan, Ying-
dc.contributor.authorWang, Meihui-
dc.contributor.authorCao, Xiaoxue-
dc.contributor.authorGao, Junfeng-
dc.contributor.authorLiu, Yingjun-
dc.contributor.authorChen, Xianjue-
dc.contributor.authorWang, Bin-
dc.contributor.authorWang, Bo-
dc.contributor.authorZhu, Chongyang-
dc.contributor.authorWang, Xiao-
dc.contributor.authorCao, Ke-
dc.contributor.authorHuang, Ming-
dc.contributor.authorCunning, Benjamin V.-
dc.contributor.authorPang, Jintao-
dc.contributor.authorXu, Wendao-
dc.contributor.authorYing, Yibin-
dc.contributor.authorXu, Zhen-
dc.contributor.authorFang, Wenzhang-
dc.contributor.authorLu, Yang-
dc.contributor.authorRuoff, Rodney S.-
dc.contributor.authorGao, Chao-
dc.date.accessioned2023-03-09T09:59:36Z-
dc.date.available2023-03-09T09:59:36Z-
dc.date.issued2021-
dc.identifier.citationAdvanced Materials, 2021, v. 33, n. 49, article no. 2104195-
dc.identifier.issn0935-9648-
dc.identifier.urihttp://hdl.handle.net/10722/326301-
dc.description.abstractA “cooling–contraction” method to separate large-area (up to 4.2 cm in lateral size) graphene oxide (GO)-assembled films (of nanoscale thickness) from substrates is reported. Heat treatment at 3000 °C of such free-standing macroscale films yields highly crystalline “macroassembled graphene nanofilms” (nMAGs) with 16–48 nm thickness. These nMAGs present tensile strength of 5.5–11.3 GPa (with ≈3 µm gauge length), electrical conductivity of 1.8–2.1 MS m−1, thermal conductivity of 2027–2820 W m−1 K−1, and carrier relaxation time up to ≈23 ps. As a demonstration application, an nMAG-based sound-generator shows a 30 µs response and sound pressure level of 89 dB at 1 W cm−2. A THz metasurface fabricated from nMAG has a light response of 8.2% for 0.159 W mm−2 and can detect down to 0.01 ppm of glucose. The approach provides a straightforward way to form highly crystallized graphene nanofilms from low-cost GO sheets.-
dc.languageeng-
dc.relation.ispartofAdvanced Materials-
dc.subjectgraphene nanofilms-
dc.subjecthigh crystallinity-
dc.subjectmacroassembly-
dc.subjectterahertz sensors-
dc.subjectthermoacoustic devices-
dc.titleMultifunctional Macroassembled Graphene Nanofilms with High Crystallinity-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1002/adma.202104195-
dc.identifier.pmid34622487-
dc.identifier.scopuseid_2-s2.0-85116454423-
dc.identifier.volume33-
dc.identifier.issue49-
dc.identifier.spagearticle no. 2104195-
dc.identifier.epagearticle no. 2104195-
dc.identifier.eissn1521-4095-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats