File Download
Supplementary

postgraduate thesis: Accurate genome consensus and misassembly detection in assembling nanopore sequencing data via deep learning

TitleAccurate genome consensus and misassembly detection in assembling nanopore sequencing data via deep learning
Authors
Advisors
Advisor(s):Lam, TW
Issue Date2022
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Citation
Zhang, Y. [張亦凡]. (2022). Accurate genome consensus and misassembly detection in assembling nanopore sequencing data via deep learning. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR.
DegreeMaster of Philosophy
SubjectGenomics
Nanopores
Deep learning (Machine learning)
Dept/ProgramComputer Science
Persistent Identifierhttp://hdl.handle.net/10722/322957

 

DC FieldValueLanguage
dc.contributor.advisorLam, TW-
dc.contributor.authorZhang, Yifan-
dc.contributor.author張亦凡-
dc.date.accessioned2022-11-18T10:42:08Z-
dc.date.available2022-11-18T10:42:08Z-
dc.date.issued2022-
dc.identifier.citationZhang, Y. [張亦凡]. (2022). Accurate genome consensus and misassembly detection in assembling nanopore sequencing data via deep learning. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR.-
dc.identifier.urihttp://hdl.handle.net/10722/322957-
dc.languageeng-
dc.publisherThe University of Hong Kong (Pokfulam, Hong Kong)-
dc.relation.ispartofHKU Theses Online (HKUTO)-
dc.rightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works.-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subject.lcshGenomics-
dc.subject.lcshNanopores-
dc.subject.lcshDeep learning (Machine learning)-
dc.titleAccurate genome consensus and misassembly detection in assembling nanopore sequencing data via deep learning-
dc.typePG_Thesis-
dc.description.thesisnameMaster of Philosophy-
dc.description.thesislevelMaster-
dc.description.thesisdisciplineComputer Science-
dc.description.naturepublished_or_final_version-
dc.date.hkucongregation2022-
dc.identifier.mmsid991044609096803414-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats