File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Laser soliton microcombs heterogeneously integrated on silicon

TitleLaser soliton microcombs heterogeneously integrated on silicon
Authors
Issue Date2021
Citation
Science, 2021, v. 373, n. 6550, p. 99-103 How to Cite?
AbstractSilicon photonics enables wafer-scale integration of optical functionalities on chip. Silicon-based laser frequency combs can provide integrated sources of mutually coherent laser lines for terabit-per-second transceivers, parallel coherent light detection and ranging, or photonics-assisted signal processing. We report heterogeneously integrated laser soliton microcombs combining both indium phospide/silicon (InP/Si) semiconductor lasers and ultralow-loss silicon nitride (Si3N4) microresonators on a monolithic silicon substrate. Thousands of devices can be produced from a single wafer by using complementary metal-oxide-semiconductor-compatible techniques. With on-chip electrical control of the laser-microresonator relative optical phase, these devices can output single-soliton microcombs with a 100-gigahertz repetition rate. Furthermore, we observe laser frequency noise reduction due to self-injection locking of the InP/Si laser to the Si3N4 microresonator. Our approach provides a route for large-volume, low-cost manufacturing of narrow-linewidth, chip-based frequency combs for next-generation high-capacity transceivers, data centers, space and mobile platforms.
Persistent Identifierhttp://hdl.handle.net/10722/321946
ISSN
2023 Impact Factor: 44.7
2023 SCImago Journal Rankings: 11.902
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorXiang, Chao-
dc.contributor.authorLiu, Junqiu-
dc.contributor.authorGuo, Joel-
dc.contributor.authorChang, Lin-
dc.contributor.authorWang, Rui Ning-
dc.contributor.authorWeng, Wenle-
dc.contributor.authorPeters, Jonathan-
dc.contributor.authorXie, Weiqiang-
dc.contributor.authorZhang, Zeyu-
dc.contributor.authorRiemensberger, Johann-
dc.contributor.authorSelvidge, Jennifer-
dc.contributor.authorKippenberg, Tobias J.-
dc.contributor.authorBowers, John E.-
dc.date.accessioned2022-11-03T02:22:33Z-
dc.date.available2022-11-03T02:22:33Z-
dc.date.issued2021-
dc.identifier.citationScience, 2021, v. 373, n. 6550, p. 99-103-
dc.identifier.issn0036-8075-
dc.identifier.urihttp://hdl.handle.net/10722/321946-
dc.description.abstractSilicon photonics enables wafer-scale integration of optical functionalities on chip. Silicon-based laser frequency combs can provide integrated sources of mutually coherent laser lines for terabit-per-second transceivers, parallel coherent light detection and ranging, or photonics-assisted signal processing. We report heterogeneously integrated laser soliton microcombs combining both indium phospide/silicon (InP/Si) semiconductor lasers and ultralow-loss silicon nitride (Si3N4) microresonators on a monolithic silicon substrate. Thousands of devices can be produced from a single wafer by using complementary metal-oxide-semiconductor-compatible techniques. With on-chip electrical control of the laser-microresonator relative optical phase, these devices can output single-soliton microcombs with a 100-gigahertz repetition rate. Furthermore, we observe laser frequency noise reduction due to self-injection locking of the InP/Si laser to the Si3N4 microresonator. Our approach provides a route for large-volume, low-cost manufacturing of narrow-linewidth, chip-based frequency combs for next-generation high-capacity transceivers, data centers, space and mobile platforms.-
dc.languageeng-
dc.relation.ispartofScience-
dc.titleLaser soliton microcombs heterogeneously integrated on silicon-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1126/science.abh2076-
dc.identifier.pmid34210884-
dc.identifier.scopuseid_2-s2.0-85109118010-
dc.identifier.volume373-
dc.identifier.issue6550-
dc.identifier.spage99-
dc.identifier.epage103-
dc.identifier.eissn1095-9203-
dc.identifier.isiWOS:000677843100037-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats