File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: 基于語義嵌入模型與交易信息的智能合約自動分類系統

Title基于語義嵌入模型與交易信息的智能合約自動分類系統
Towards Automatic Smart-contract Codes Classification by Means of Word Embedding Model and Transaction Information
Authors
KeywordsCodes
Long-short term memory
Neural network
Smart contract
Transaction information
Word embedding
Issue Date2017
Citation
自动化学报, 2017, v. 43, n. 9, p. 1532-1543 How to Cite?
Acta Automatica Sinica, 2017, v. 43, n. 9, p. 1532-1543 How to Cite?
Abstract作为区块链技术的一个突破性扩展,智能合约允许用户在区块链上实现个性化的代码逻辑从而使得区块链技术更加的简单易用.在智能合约代码信息迅速增长的背景下,如何管理和组织海量智能合约代码变得更具挑战性.基于人工智能技术的代码分类系统能根据代码的文本信息自动分门别类,从而更好地帮助人们管理和组织代码的信息.本文以Ethereum平台上的智能合约为例,鉴于词嵌入模型可以捕获代码的语义信息,提出一种基于词嵌入模型的智能合约分类系统.另外,每一个智能合约都关联着一系列交易,我们又通过智能合约的交易信息来更深入地了解智能合约的逻辑行为.据我们所知,本文是对智能合约代码自动分类问题的首次研究尝试.测试结果显示该系统具有较为令人满意的分类性能.
As an innovative extension of the blockchain technology, smart contract enables users to implement personalized logic. As such, blockchain technology becomes more simple and useful. However, due to the rapid increase of the amount of smart contract codes, managing smart contract codes is becoming much more challenging. Automatic code classifier, which rests on the machine learning methods, can automatically identify the categories of the codes so as to saves a lot of human efforts. In this paper we investigate the smart contract codes of the Ethereum platform and propose a novel smart contract code classifier. To the best of our knowledge, this is the first exploration on automatic classification of the smart contract codes. The classifier is based on the word embedding model. Since each smart contract corresponds to a series of transactions, we further utilize the transactions in the contract to understand the intrinsic logic of the contract. Extensive experiments have verified the effectiveness of our proposed system.
Persistent Identifierhttp://hdl.handle.net/10722/321767
ISSN
2023 SCImago Journal Rankings: 0.499

 

DC FieldValueLanguage
dc.contributor.authorHuang, Bu Tian-
dc.contributor.authorLiu, Qi-
dc.contributor.authorHe, Qin Ming-
dc.contributor.authorLiu, Zhen Guang-
dc.contributor.authorChen, Jian Hai-
dc.date.accessioned2022-11-03T02:21:18Z-
dc.date.available2022-11-03T02:21:18Z-
dc.date.issued2017-
dc.identifier.citation自动化学报, 2017, v. 43, n. 9, p. 1532-1543-
dc.identifier.citationActa Automatica Sinica, 2017, v. 43, n. 9, p. 1532-1543-
dc.identifier.issn0254-4156-
dc.identifier.urihttp://hdl.handle.net/10722/321767-
dc.description.abstract作为区块链技术的一个突破性扩展,智能合约允许用户在区块链上实现个性化的代码逻辑从而使得区块链技术更加的简单易用.在智能合约代码信息迅速增长的背景下,如何管理和组织海量智能合约代码变得更具挑战性.基于人工智能技术的代码分类系统能根据代码的文本信息自动分门别类,从而更好地帮助人们管理和组织代码的信息.本文以Ethereum平台上的智能合约为例,鉴于词嵌入模型可以捕获代码的语义信息,提出一种基于词嵌入模型的智能合约分类系统.另外,每一个智能合约都关联着一系列交易,我们又通过智能合约的交易信息来更深入地了解智能合约的逻辑行为.据我们所知,本文是对智能合约代码自动分类问题的首次研究尝试.测试结果显示该系统具有较为令人满意的分类性能.-
dc.description.abstractAs an innovative extension of the blockchain technology, smart contract enables users to implement personalized logic. As such, blockchain technology becomes more simple and useful. However, due to the rapid increase of the amount of smart contract codes, managing smart contract codes is becoming much more challenging. Automatic code classifier, which rests on the machine learning methods, can automatically identify the categories of the codes so as to saves a lot of human efforts. In this paper we investigate the smart contract codes of the Ethereum platform and propose a novel smart contract code classifier. To the best of our knowledge, this is the first exploration on automatic classification of the smart contract codes. The classifier is based on the word embedding model. Since each smart contract corresponds to a series of transactions, we further utilize the transactions in the contract to understand the intrinsic logic of the contract. Extensive experiments have verified the effectiveness of our proposed system.-
dc.languageeng-
dc.relation.ispartof自动化学报-
dc.relation.ispartofActa Automatica Sinica-
dc.subjectCodes-
dc.subjectLong-short term memory-
dc.subjectNeural network-
dc.subjectSmart contract-
dc.subjectTransaction information-
dc.subjectWord embedding-
dc.title基于語義嵌入模型與交易信息的智能合約自動分類系統-
dc.titleTowards Automatic Smart-contract Codes Classification by Means of Word Embedding Model and Transaction Information-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.16383/j.aas.2017.c160655-
dc.identifier.scopuseid_2-s2.0-85034778436-
dc.identifier.volume43-
dc.identifier.issue9-
dc.identifier.spage1532-
dc.identifier.epage1543-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats