File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Estimation of clear-sky land surface longwave radiation from MODIS data products by merging multiple models

TitleEstimation of clear-sky land surface longwave radiation from MODIS data products by merging multiple models
Authors
Issue Date2012
Citation
Journal of Geophysical Research Atmospheres, 2012, v. 117, n. 22, article no. D22107 How to Cite?
AbstractThe surface longwave radiation budget plays an important role in the Earth's climate system. Remote sensing provides the most practical way to map surface longwave radiation on a large scale and at a high spatial resolution. In this paper, we evaluate both surface downward longwave radiation (DLR) and upwelling longwave radiation (ULR) models under clear-sky conditions from MODIS data products. There are multiple DLR models available with variable uncertainties, and the Bayesian Model Averaging (BMA) method is incorporated in this study to combine the predictive distribution of these models for better accuracy. The integrated estimates for DLR based on the BMA method have lower root-mean-square errors (RMSEs) and higher coefficients of determination (R 2) than the best individual model. The RMSEs decreased by approximately 10 W/m2 at two forest sites and by approximately 4 W/m2 at other sites. The R2 value increased at each site by more than 0.05. Two models for calculating the surface upwelling longwave radiation (ULR) are also evaluated at 16 sites. The results show that both the land surface temperature (LST)-emissivity method and the direct method, the Wang-U model underestimate the clear-sky ULR. The validation results show that the surface net longwave radiation (NLR) estimated using DLR estimates based on the BMA method and ULR estimates based on the LST-emissivity method is the most accurate. © 2012. American Geophysical Union. All Rights Reserved.
Persistent Identifierhttp://hdl.handle.net/10722/321497
ISSN
2015 Impact Factor: 3.318
2020 SCImago Journal Rankings: 1.670
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorWu, Haoran-
dc.contributor.authorZhang, Xiaotong-
dc.contributor.authorLiang, Shunlin-
dc.contributor.authorYang, Hua-
dc.contributor.authorZhou, Gongqi-
dc.date.accessioned2022-11-03T02:19:18Z-
dc.date.available2022-11-03T02:19:18Z-
dc.date.issued2012-
dc.identifier.citationJournal of Geophysical Research Atmospheres, 2012, v. 117, n. 22, article no. D22107-
dc.identifier.issn0148-0227-
dc.identifier.urihttp://hdl.handle.net/10722/321497-
dc.description.abstractThe surface longwave radiation budget plays an important role in the Earth's climate system. Remote sensing provides the most practical way to map surface longwave radiation on a large scale and at a high spatial resolution. In this paper, we evaluate both surface downward longwave radiation (DLR) and upwelling longwave radiation (ULR) models under clear-sky conditions from MODIS data products. There are multiple DLR models available with variable uncertainties, and the Bayesian Model Averaging (BMA) method is incorporated in this study to combine the predictive distribution of these models for better accuracy. The integrated estimates for DLR based on the BMA method have lower root-mean-square errors (RMSEs) and higher coefficients of determination (R <sup>2</sup>) than the best individual model. The RMSEs decreased by approximately 10 W/m<sup>2</sup> at two forest sites and by approximately 4 W/m<sup>2</sup> at other sites. The R<sup>2</sup> value increased at each site by more than 0.05. Two models for calculating the surface upwelling longwave radiation (ULR) are also evaluated at 16 sites. The results show that both the land surface temperature (LST)-emissivity method and the direct method, the Wang-U model underestimate the clear-sky ULR. The validation results show that the surface net longwave radiation (NLR) estimated using DLR estimates based on the BMA method and ULR estimates based on the LST-emissivity method is the most accurate. © 2012. American Geophysical Union. All Rights Reserved.-
dc.languageeng-
dc.relation.ispartofJournal of Geophysical Research Atmospheres-
dc.titleEstimation of clear-sky land surface longwave radiation from MODIS data products by merging multiple models-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1029/2012JD017567-
dc.identifier.scopuseid_2-s2.0-84870461663-
dc.identifier.volume117-
dc.identifier.issue22-
dc.identifier.spagearticle no. D22107-
dc.identifier.epagearticle no. D22107-
dc.identifier.isiWOS:000311563400001-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats