File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: A Convex-Programming Approach for Efficient Directed Densest Subgraph Discovery

TitleA Convex-Programming Approach for Efficient Directed Densest Subgraph Discovery
Authors
Issue Date2022
PublisherACM.
Citation
Proceedings of the 2022 International Conference on Management of Data, p. 845-859 How to Cite?
Persistent Identifierhttp://hdl.handle.net/10722/320888
ISBN
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorMA, C-
dc.contributor.authorFang, Y-
dc.contributor.authorCheng, CKR-
dc.contributor.authorLakshmanan, LVS-
dc.contributor.authorHAN, X-
dc.date.accessioned2022-11-01T04:43:09Z-
dc.date.available2022-11-01T04:43:09Z-
dc.date.issued2022-
dc.identifier.citationProceedings of the 2022 International Conference on Management of Data, p. 845-859-
dc.identifier.isbn9781450392495-
dc.identifier.urihttp://hdl.handle.net/10722/320888-
dc.languageeng-
dc.publisherACM. -
dc.relation.ispartofProceedings of the 2022 International Conference on Management of Data-
dc.titleA Convex-Programming Approach for Efficient Directed Densest Subgraph Discovery-
dc.typeConference_Paper-
dc.identifier.emailCheng, CKR: ckcheng@cs.hku.hk-
dc.identifier.authorityCheng, CKR=rp00074-
dc.identifier.doi10.1145/3514221.3517837-
dc.identifier.hkuros340591-
dc.identifier.spage845-
dc.identifier.epage859-
dc.identifier.isiWOS:000852705400063-
dc.publisher.placeNew York, NY, USA-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats