File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Dentin Priming with Amphipathic Antimicrobial Peptides

TitleDentin Priming with Amphipathic Antimicrobial Peptides
Authors
Keywordscaries detection/diagnostic/prevention
imaging
materials science(s)
restorative materials
surface chemistry/properties
Issue Date2019
Citation
Journal of Dental Research, 2019, v. 98, n. 10, p. 1112-1121 How to Cite?
AbstractThe evolution of bonded restorations has undergone great progress over several decades. Nonetheless, life spans of bonded restorations are limited mainly because of the eventual incidence of recurrent caries. Over time, water and waterborne agents (acids, enzymes) degrade the components of the dentin/restoration interface, allowing bacterial colonization and dentin reinfection at the margins of the restoration. We developed a 2-tier protective technology consisting of priming/coating dentin with amphipathic and antimicrobial peptides (AAMPs) to obtain hydrophobic/water-repellent and antibiofilm dentin-resisting recurrent caries around bonded restorations. We tested a series of AAMPs to assess their structure-function relationships as well as the effects of different dentin-conditioning methods on the structural features of AAMP-coated dentin. We found relation between the secondary structure of AAMPs (high portion of β-sheet), the antimicrobial potency of AAMPs, and the AAMPs’ ability to form hydrophobic coatings on dentin. We also determined that AAMPs had preferential adsorption on the mineral phase of dentin, which suggested that peptides arrange their cationic and hydrophilic motifs in direct contact with the negatively charged minerals in the hydrophilic dentin. These results led us to explore different dentin-conditioning methods that would increase the mineral/collagen ratio and their effect on AAMP immobilization. We innovatively imaged the spatial distribution of the AAMPs in relation to the dentinal tubules and collagen network using a minimally invasive multimodal imaging technique: multiphoton–second harmonic generation. Using multiphoton–second harmonic generation imaging, we determined that partial deproteinization of dentin increased the amount of immobilized AAMPs as compared with the total etched dentin at the dentin surface and extended deeply around dentinal tubules. Last, we analyzed the release rate of AAMPs from dentin coatings in artificial saliva to predict their stability in the clinical setting. In conclusion, priming dentin with AAMPs is a versatile new approach with potential to fortify the otherwise vulnerable adhesive-based interfaces.
Persistent Identifierhttp://hdl.handle.net/10722/318781
ISSN
2023 Impact Factor: 5.7
2023 SCImago Journal Rankings: 1.909
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorMoussa, D. G.-
dc.contributor.authorKirihara, J. A.-
dc.contributor.authorYe, Z.-
dc.contributor.authorFischer, N. G.-
dc.contributor.authorKhot, J.-
dc.contributor.authorWitthuhn, B. A.-
dc.contributor.authorAparicio, C.-
dc.date.accessioned2022-10-11T12:24:33Z-
dc.date.available2022-10-11T12:24:33Z-
dc.date.issued2019-
dc.identifier.citationJournal of Dental Research, 2019, v. 98, n. 10, p. 1112-1121-
dc.identifier.issn0022-0345-
dc.identifier.urihttp://hdl.handle.net/10722/318781-
dc.description.abstractThe evolution of bonded restorations has undergone great progress over several decades. Nonetheless, life spans of bonded restorations are limited mainly because of the eventual incidence of recurrent caries. Over time, water and waterborne agents (acids, enzymes) degrade the components of the dentin/restoration interface, allowing bacterial colonization and dentin reinfection at the margins of the restoration. We developed a 2-tier protective technology consisting of priming/coating dentin with amphipathic and antimicrobial peptides (AAMPs) to obtain hydrophobic/water-repellent and antibiofilm dentin-resisting recurrent caries around bonded restorations. We tested a series of AAMPs to assess their structure-function relationships as well as the effects of different dentin-conditioning methods on the structural features of AAMP-coated dentin. We found relation between the secondary structure of AAMPs (high portion of β-sheet), the antimicrobial potency of AAMPs, and the AAMPs’ ability to form hydrophobic coatings on dentin. We also determined that AAMPs had preferential adsorption on the mineral phase of dentin, which suggested that peptides arrange their cationic and hydrophilic motifs in direct contact with the negatively charged minerals in the hydrophilic dentin. These results led us to explore different dentin-conditioning methods that would increase the mineral/collagen ratio and their effect on AAMP immobilization. We innovatively imaged the spatial distribution of the AAMPs in relation to the dentinal tubules and collagen network using a minimally invasive multimodal imaging technique: multiphoton–second harmonic generation. Using multiphoton–second harmonic generation imaging, we determined that partial deproteinization of dentin increased the amount of immobilized AAMPs as compared with the total etched dentin at the dentin surface and extended deeply around dentinal tubules. Last, we analyzed the release rate of AAMPs from dentin coatings in artificial saliva to predict their stability in the clinical setting. In conclusion, priming dentin with AAMPs is a versatile new approach with potential to fortify the otherwise vulnerable adhesive-based interfaces.-
dc.languageeng-
dc.relation.ispartofJournal of Dental Research-
dc.subjectcaries detection/diagnostic/prevention-
dc.subjectimaging-
dc.subjectmaterials science(s)-
dc.subjectrestorative materials-
dc.subjectsurface chemistry/properties-
dc.titleDentin Priming with Amphipathic Antimicrobial Peptides-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1177/0022034519863772-
dc.identifier.pmid31313946-
dc.identifier.scopuseid_2-s2.0-85070476237-
dc.identifier.volume98-
dc.identifier.issue10-
dc.identifier.spage1112-
dc.identifier.epage1121-
dc.identifier.eissn1544-0591-
dc.identifier.isiWOS:000479695000001-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats