File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Silicon nanowires with controlled sidewall profile and roughness fabricated by thin-film dewetting and metal-assisted chemical etching

TitleSilicon nanowires with controlled sidewall profile and roughness fabricated by thin-film dewetting and metal-assisted chemical etching
Authors
Issue Date2013
Citation
Nanotechnology, 2013, v. 24, n. 22, article no. 225305 How to Cite?
AbstractThis paper presents a non-lithographic approach to generate wafer-scale single crystal silicon nanowires (SiNWs) with controlled sidewall profile and surface morphology. The approach begins with silver (Ag) thin-film thermal dewetting, gold (Au) deposition and lift-off to generate a large-scale Au mesh on Si substrates. This is followed by metal-assisted chemical etching (MacEtch), where the Au mesh serves as a catalyst to produce arrays of smooth Si nanowires with tunable taper up to 13°. The mean diameter of the thus fabricated SiNWs can be controlled to range from 62 to 300 nm with standard deviations as small as 13.6 nm, and the areal coverage of the wire arrays can be up to 46%. Control of the mean wire diameter is achieved by controlling the pore diameter of the metallic mesh which is, in turn, controlled by adjusting the initial thin-film thickness and deposition rate. To control the wire surface morphology, a post-fabrication roughening step is added to the approach. This step uses Au nanoparticles and slow-rate MacEtch to produce rms surface roughness up to 3.6 nm. © 2013 IOP Publishing Ltd.
Persistent Identifierhttp://hdl.handle.net/10722/318537
ISSN
2021 Impact Factor: 3.953
2020 SCImago Journal Rankings: 0.926
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorAzeredo, B. P.-
dc.contributor.authorSadhu, J.-
dc.contributor.authorMa, J.-
dc.contributor.authorJacobs, K.-
dc.contributor.authorKim, J.-
dc.contributor.authorLee, K.-
dc.contributor.authorEraker, J. H.-
dc.contributor.authorLi, X.-
dc.contributor.authorSinha, S.-
dc.contributor.authorFang, N.-
dc.contributor.authorFerreira, P.-
dc.contributor.authorHsu, K.-
dc.date.accessioned2022-10-11T12:23:59Z-
dc.date.available2022-10-11T12:23:59Z-
dc.date.issued2013-
dc.identifier.citationNanotechnology, 2013, v. 24, n. 22, article no. 225305-
dc.identifier.issn0957-4484-
dc.identifier.urihttp://hdl.handle.net/10722/318537-
dc.description.abstractThis paper presents a non-lithographic approach to generate wafer-scale single crystal silicon nanowires (SiNWs) with controlled sidewall profile and surface morphology. The approach begins with silver (Ag) thin-film thermal dewetting, gold (Au) deposition and lift-off to generate a large-scale Au mesh on Si substrates. This is followed by metal-assisted chemical etching (MacEtch), where the Au mesh serves as a catalyst to produce arrays of smooth Si nanowires with tunable taper up to 13°. The mean diameter of the thus fabricated SiNWs can be controlled to range from 62 to 300 nm with standard deviations as small as 13.6 nm, and the areal coverage of the wire arrays can be up to 46%. Control of the mean wire diameter is achieved by controlling the pore diameter of the metallic mesh which is, in turn, controlled by adjusting the initial thin-film thickness and deposition rate. To control the wire surface morphology, a post-fabrication roughening step is added to the approach. This step uses Au nanoparticles and slow-rate MacEtch to produce rms surface roughness up to 3.6 nm. © 2013 IOP Publishing Ltd.-
dc.languageeng-
dc.relation.ispartofNanotechnology-
dc.titleSilicon nanowires with controlled sidewall profile and roughness fabricated by thin-film dewetting and metal-assisted chemical etching-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1088/0957-4484/24/22/225305-
dc.identifier.scopuseid_2-s2.0-84877776152-
dc.identifier.volume24-
dc.identifier.issue22-
dc.identifier.spagearticle no. 225305-
dc.identifier.epagearticle no. 225305-
dc.identifier.eissn1361-6528-
dc.identifier.isiWOS:000319326600010-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats