File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1371/journal.pone.0117101
- Scopus: eid_2-s2.0-84922745468
- PMID: 25664938
- WOS: WOS:000349123100018
Supplementary
- Citations:
- Appears in Collections:
Article: Investigation of inter-slice magnetization transfer effects as a new method for MTR imaging of the human brain
Title | Investigation of inter-slice magnetization transfer effects as a new method for MTR imaging of the human brain |
---|---|
Authors | |
Issue Date | 2015 |
Citation | PLoS ONE, 2015, v. 10, n. 2, article no. e0117101 How to Cite? |
Abstract | We present a new method for magnetization transfer (MT) ratio imaging in the brain that requires no separate saturation pulse. Interslice MT effects that are inherent to multi-slice balanced steady-state free precession (bSSFP) imaging were controlled via an interslice delay time to generate MT-weighted (0 s delay) and reference images (5-8 s delay) for MT ratio (MTR) imaging of the brain. The effects of varying flip angle and phase encoding (PE) order were investigated experimentally in normal, healthy subjects. Values of up to ∼ 50% and ∼ 40% were observed for white and gray matter MTR. Centric PE showed larger MTR, higher SNR, and better contrast between white and gray matter than linear PE. Simulations of a two-pool model of MT agreed well with in vivo MTR values. Simulations were also used to investigate the effects of varying acquisition parameters, and the effects of varying flip angle, PE steps, and interslice delay are discussed. Lastly, we demonstrated reduced banding with a non-balanced SSFP-FID sequence and showed preliminary results of interslice MTR imaging of meningioma. |
Persistent Identifier | http://hdl.handle.net/10722/316099 |
PubMed Central ID | |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Barker, Jeffrey W. | - |
dc.contributor.author | Han, Paul Kyu | - |
dc.contributor.author | Choi, Seung Hong | - |
dc.contributor.author | Bae, Kyongtae Ty | - |
dc.contributor.author | Park, Sung Hong | - |
dc.date.accessioned | 2022-08-24T15:49:14Z | - |
dc.date.available | 2022-08-24T15:49:14Z | - |
dc.date.issued | 2015 | - |
dc.identifier.citation | PLoS ONE, 2015, v. 10, n. 2, article no. e0117101 | - |
dc.identifier.uri | http://hdl.handle.net/10722/316099 | - |
dc.description.abstract | We present a new method for magnetization transfer (MT) ratio imaging in the brain that requires no separate saturation pulse. Interslice MT effects that are inherent to multi-slice balanced steady-state free precession (bSSFP) imaging were controlled via an interslice delay time to generate MT-weighted (0 s delay) and reference images (5-8 s delay) for MT ratio (MTR) imaging of the brain. The effects of varying flip angle and phase encoding (PE) order were investigated experimentally in normal, healthy subjects. Values of up to ∼ 50% and ∼ 40% were observed for white and gray matter MTR. Centric PE showed larger MTR, higher SNR, and better contrast between white and gray matter than linear PE. Simulations of a two-pool model of MT agreed well with in vivo MTR values. Simulations were also used to investigate the effects of varying acquisition parameters, and the effects of varying flip angle, PE steps, and interslice delay are discussed. Lastly, we demonstrated reduced banding with a non-balanced SSFP-FID sequence and showed preliminary results of interslice MTR imaging of meningioma. | - |
dc.language | eng | - |
dc.relation.ispartof | PLoS ONE | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.title | Investigation of inter-slice magnetization transfer effects as a new method for MTR imaging of the human brain | - |
dc.type | Article | - |
dc.description.nature | published_or_final_version | - |
dc.identifier.doi | 10.1371/journal.pone.0117101 | - |
dc.identifier.pmid | 25664938 | - |
dc.identifier.pmcid | PMC4321840 | - |
dc.identifier.scopus | eid_2-s2.0-84922745468 | - |
dc.identifier.volume | 10 | - |
dc.identifier.issue | 2 | - |
dc.identifier.spage | article no. e0117101 | - |
dc.identifier.epage | article no. e0117101 | - |
dc.identifier.eissn | 1932-6203 | - |
dc.identifier.isi | WOS:000349123100018 | - |