File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Investigation of inter-slice magnetization transfer effects as a new method for MTR imaging of the human brain

TitleInvestigation of inter-slice magnetization transfer effects as a new method for MTR imaging of the human brain
Authors
Issue Date2015
Citation
PLoS ONE, 2015, v. 10, n. 2, article no. e0117101 How to Cite?
AbstractWe present a new method for magnetization transfer (MT) ratio imaging in the brain that requires no separate saturation pulse. Interslice MT effects that are inherent to multi-slice balanced steady-state free precession (bSSFP) imaging were controlled via an interslice delay time to generate MT-weighted (0 s delay) and reference images (5-8 s delay) for MT ratio (MTR) imaging of the brain. The effects of varying flip angle and phase encoding (PE) order were investigated experimentally in normal, healthy subjects. Values of up to ∼ 50% and ∼ 40% were observed for white and gray matter MTR. Centric PE showed larger MTR, higher SNR, and better contrast between white and gray matter than linear PE. Simulations of a two-pool model of MT agreed well with in vivo MTR values. Simulations were also used to investigate the effects of varying acquisition parameters, and the effects of varying flip angle, PE steps, and interslice delay are discussed. Lastly, we demonstrated reduced banding with a non-balanced SSFP-FID sequence and showed preliminary results of interslice MTR imaging of meningioma.
Persistent Identifierhttp://hdl.handle.net/10722/316099
PubMed Central ID
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorBarker, Jeffrey W.-
dc.contributor.authorHan, Paul Kyu-
dc.contributor.authorChoi, Seung Hong-
dc.contributor.authorBae, Kyongtae Ty-
dc.contributor.authorPark, Sung Hong-
dc.date.accessioned2022-08-24T15:49:14Z-
dc.date.available2022-08-24T15:49:14Z-
dc.date.issued2015-
dc.identifier.citationPLoS ONE, 2015, v. 10, n. 2, article no. e0117101-
dc.identifier.urihttp://hdl.handle.net/10722/316099-
dc.description.abstractWe present a new method for magnetization transfer (MT) ratio imaging in the brain that requires no separate saturation pulse. Interslice MT effects that are inherent to multi-slice balanced steady-state free precession (bSSFP) imaging were controlled via an interslice delay time to generate MT-weighted (0 s delay) and reference images (5-8 s delay) for MT ratio (MTR) imaging of the brain. The effects of varying flip angle and phase encoding (PE) order were investigated experimentally in normal, healthy subjects. Values of up to ∼ 50% and ∼ 40% were observed for white and gray matter MTR. Centric PE showed larger MTR, higher SNR, and better contrast between white and gray matter than linear PE. Simulations of a two-pool model of MT agreed well with in vivo MTR values. Simulations were also used to investigate the effects of varying acquisition parameters, and the effects of varying flip angle, PE steps, and interslice delay are discussed. Lastly, we demonstrated reduced banding with a non-balanced SSFP-FID sequence and showed preliminary results of interslice MTR imaging of meningioma.-
dc.languageeng-
dc.relation.ispartofPLoS ONE-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.titleInvestigation of inter-slice magnetization transfer effects as a new method for MTR imaging of the human brain-
dc.typeArticle-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1371/journal.pone.0117101-
dc.identifier.pmid25664938-
dc.identifier.pmcidPMC4321840-
dc.identifier.scopuseid_2-s2.0-84922745468-
dc.identifier.volume10-
dc.identifier.issue2-
dc.identifier.spagearticle no. e0117101-
dc.identifier.epagearticle no. e0117101-
dc.identifier.eissn1932-6203-
dc.identifier.isiWOS:000349123100018-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats