File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Wirtinger holography for near-eye displays

TitleWirtinger holography for near-eye displays
Authors
KeywordsAugmented reality
Computational displays
Computer generated holography
Neareye display
Vergence-accommodation conflict
Virtual reality
Issue Date2019
Citation
ACM Transactions on Graphics, 2019, v. 38, n. 6, article no. 3356539 How to Cite?
AbstractNear-eye displays using holographic projection are emerging as an exciting display approach for virtual and augmented reality at high-resolution without complex optical setups D shifting optical complexity to computation. While precise phase modulation hardware is becoming available, phase retrieval algorithms are still in their infancy, and holographic display approaches resort to heuristic encoding methods or iterative methods relying on various relaxations. In this work, we depart from such existing approximations and solve the phase retrieval problem for a hologram of a scene at a single depth at a given time by revisiting complex Wirtinger derivatives. We also discuss extending our framework to render 3D volumetric scenes. Using Wirtinger derivatives allows us to pose the phase retrieval problem as a quadratic problem which can be minimized with first-order optimization methods. The proposed Wirtinger Holography is flexible and facilitates the use of different loss functions, including learned perceptual losses parametrized by deep neural networks, as well as stochastic optimization methods. We validate this framework by demonstrating holographic reconstructions with an order of magnitude lower error, both in simulation and on an experimental hardware prototype.
Persistent Identifierhttp://hdl.handle.net/10722/315314
ISSN
2023 Impact Factor: 7.8
2023 SCImago Journal Rankings: 7.766
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorChakravarthula, Praneeth-
dc.contributor.authorPeng, Yifan-
dc.contributor.authorKollin, Joel-
dc.contributor.authorFuchs, Henry-
dc.contributor.authorHeide, Felix-
dc.date.accessioned2022-08-05T10:18:26Z-
dc.date.available2022-08-05T10:18:26Z-
dc.date.issued2019-
dc.identifier.citationACM Transactions on Graphics, 2019, v. 38, n. 6, article no. 3356539-
dc.identifier.issn0730-0301-
dc.identifier.urihttp://hdl.handle.net/10722/315314-
dc.description.abstractNear-eye displays using holographic projection are emerging as an exciting display approach for virtual and augmented reality at high-resolution without complex optical setups D shifting optical complexity to computation. While precise phase modulation hardware is becoming available, phase retrieval algorithms are still in their infancy, and holographic display approaches resort to heuristic encoding methods or iterative methods relying on various relaxations. In this work, we depart from such existing approximations and solve the phase retrieval problem for a hologram of a scene at a single depth at a given time by revisiting complex Wirtinger derivatives. We also discuss extending our framework to render 3D volumetric scenes. Using Wirtinger derivatives allows us to pose the phase retrieval problem as a quadratic problem which can be minimized with first-order optimization methods. The proposed Wirtinger Holography is flexible and facilitates the use of different loss functions, including learned perceptual losses parametrized by deep neural networks, as well as stochastic optimization methods. We validate this framework by demonstrating holographic reconstructions with an order of magnitude lower error, both in simulation and on an experimental hardware prototype.-
dc.languageeng-
dc.relation.ispartofACM Transactions on Graphics-
dc.subjectAugmented reality-
dc.subjectComputational displays-
dc.subjectComputer generated holography-
dc.subjectNeareye display-
dc.subjectVergence-accommodation conflict-
dc.subjectVirtual reality-
dc.titleWirtinger holography for near-eye displays-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1145/3355089.3356539-
dc.identifier.scopuseid_2-s2.0-85078914767-
dc.identifier.volume38-
dc.identifier.issue6-
dc.identifier.spagearticle no. 3356539-
dc.identifier.epagearticle no. 3356539-
dc.identifier.eissn1557-7368-
dc.identifier.isiWOS:000498397300062-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats